Engineered blood vessels may be an option in cardiac bypass

November 15, 2005

The first-ever human use of completely biologically engineered blood vessels grown from a person's own cells could be an option for people who have vessels too damaged for heart bypass, researchers reported at the American Heart Association's Scientific Sessions 2005.

"Sheet-based tissue engineering is an opportunity for patients to have an endless supply of vessels made from their own cells for bypass or revascularization surgeries," said Todd McAllister, Ph.D., co-author of the study and president and CEO of Cytograft Tissue Engineering in Novato, Calif.

Those mostly likely to need the tissue-engineered vessels are:The coronary patients make up a particularly critical group in need of options, researchers said.

In 2002, Nicolas L'Heureux, Ph.D., McAllister and Cytograft's chief scientific officer and inventor of sheet-based tissue engineering, gave a presentation on tissue-engineered blood vessels at the American Heart Association's Scientific Sessions in Chicago.

"Back then, we demonstrated the durability and clot resistance of the vessels in different animal models," McAllister said. "Now, we're reporting for the first time our results in humans. We are presenting results on the first three of nine participants in a study looking at the use of engineered blood vessels in hemodialysis patients. The major finding is that during the first five months, no failures have been noted with these first three patients and the grafts are functioning well for hemodialysis access. This is the first completely biological tissue-engineered blood vessel that has been used in human adults."

The researchers studied hemodialysis patients because the consequences of vessel failure in the arm are far less dire than heart vessel failure. The findings, however, are promising for people who need heart bypasses but can't have them due to lack of suitable veins or arteries for grafting.

"This is a dramatic clinical situation because synthetic vascular grafts cannot be used for heart bypass," L'Heureux said. "The failure rate of synthetic grafts, which can be used in hemodialysis patients, is too high for coronary applications. Patients who require coronary bypass graft surgery typically have atherosclerotic plaque blocking blood flow in one or more coronary arteries. Surgical bypass involves rerouting blood flow around blockages to deliver nutrients and oxygen to the heart. Typically, saphenous (leg) veins or internal mammary arteries are harvested from the patient and grafted into the coronary circulation to restore blood flow to the heart. Right now, if there are no suitable autologous vessels, patients have no other option."

Sheet-based tissue engineering involves taking two cell types from a small skin and vein biopsy harvested from the back of the patient's hand. "Two cell types are extracted from the biopsies: fibroblasts (cells that gives rise to connective tissue) from the skin and endothelial cells from the inner lining of the vein," McAllister said. "We then use the fibroblasts to build the mechanical backbone of our tissue-engineered vessel and use endothelial cells to provide the lining. It's that lining that prevents the vessel from clotting."

The cells are fed in a culture dish with a proprietary media that encourages the growth of extracellular matrix proteins, such as collagen. During the next six to eight weeks, the cells produce high volumes of these proteins, he said.

"At the end of that period, you end up with a robust sheet that's comprised of cells and the proteins that those cells have produced," McAllister said. "The sheet can then be detached from the cell culture substrate and rolled, stacked or molded into more complex three-dimensional organs, such as a blood vessel. This process is unique in that it is the first technology to use fibroblast-based tissues to provide mechanical strength. Historically, cardiovascular tissue engineers have focused on the role of smooth muscle cells. This is also a novel approach in that it is the first demonstration of an engineered vessel that provides adequate mechanical strength without relying upon synthetic scaffolds or exogenous biomaterials."

The researchers noted patient management issues that need to be addressed, such as trying to identify patients several months in advance to allow time to harvest tissue and grow new vessels.

"The possibilities are far-reaching -- from building vessels to heart valves to planar (flat) tissue for other vascular repair," McAllister said. "There is also an exciting potential application for pediatric coronary repair because this is a living product and can grow with the patient. Another potential benefit of the approach is that coronary bypass patients could eliminate the injury and surgical complications associated with harvesting blood vessels from the legs."
-end-
The study was funded in part by Cytograft Tissue Engineering, and the National Heart, Lung and Blood Institute. Co-authors are Nathalie Dusserre, Ph.D.; Gerhardt Konig, B.S.; Luis de la Fuente, M.D.; Alicia Marini, M.D.; Hernan Avila, M.D.; Ximena Manglano, M.D.; Robert C. Robbins, M.D.; and Sergio Garrido, M.D.

Statements and conclusions of study authors that are published in the American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect association policy or position. The American Heart Association makes no representation or warranty as to their accuracy or reliability.

NR05-1131 (SS05/ L'Heureux/McAllister)

American Heart Association

Related Endothelial Cells Articles from Brightsurf:

JACC: BTS study looks at COVID-19's impact on cardiovascular tissue, endothelial cells
In the paper, ''Cardiorenal tissues express SARS-CoV-2 entry genes and basigin (BSG/CD147) increases with age in endothelial cells,'' publishing in JACC: Basic to Translational Research, researchers used publicly available gene expression data to determine the relative expression of key SARS-CoV-2 host entry/ processing genes in human cardiorenal tissues, including aorta, coronary artery, heart (atria and left ventricle), whole blood and the kidney and for comparison the colon, spleen and lung.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Scientists modify CAR-T cells to target multiple sites on leukemia cells
In a preclinical study, scientists engineer new CAR-T cells to attack three sites on leukemia cells, instead of one.

Sphingotec's endothelial function biomarker bio-ADM® improves risk stratification of sepsis patients at ICUs
New study data show that monitoring blood levels of sphingotec's endothelial function biomarker bio-ADMĀ® on top of guideline parameter lactate improves risk stratification of sepsis patients admitted to intensive care units.

sphingotec's endothelial function biomarker bio-ADM® predicts need for organ support in general ICU patient population
Data from more than 2,000 patients enrolled in the FROG-ICU study demonstrate that high levels of bioactive adrenomedullin (bio-ADMĀ®) predict the need for organ support, ionotropes, and vasopressors in the general patient population at admission to the intensive care unit (ICU).

First-of-its-kind study in endothelial stem cells finds exposure to flavored e-cigarette liquids, e-cigarette use exacerbates cell dysfunction
There has been a rapid rise in e-cigarette use, but its health effects have not been well-studied and their effect on vascular health remains unknown.

Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.

Transplanted bone marrow endothelial progenitor cells delay ALS disease progression
Transplanting human bone marrow-derived endothelial progenitor cells into mice mimicking symptoms of amyotrophic lateral sclerosis (ALS) helped more motor neurons survive and slowed disease progression by repairing damage to the blood-spinal cord barrier, University of South Florida researchers report.

Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.

Read More: Endothelial Cells News and Endothelial Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.