New understanding of regeneration gained by Forsyth scientists

November 15, 2005

Boston-- Forsyth Institute research with the flatworm, planaria, offers new clues for understanding restoration of body structures. Researchers at The Forsyth Institute have discovered how the worm's cells communicate to correctly repair and regenerate tissue. Forsyth scientists have found that gap-junction (microscopic tunnels directly linking neighboring cells) communication contributes to this signaling. This research, led by Dr. Michael Levin, underlies principles that can potentially offer insight into human regeneration.

The restoration of body structures following injury requires both an initiation of growth and an imposition of the correct morphology upon the regenerating tissue. Understanding this process is crucial for both the basic biology of pattern formation, and for developing novel biomedical approaches. Planaria have powerful regeneration capability that makes them ideal for studying this process. When the worms are cut in half, the bottom section of the worm grows a head and the upper section a tail. Scientists have suspected that the ability of previously adjacent cells (on either side of the cut) to adopt radically different fates, as is the case with planaria where the cells have to decide whether to build a head or a tail, could be due to long-range signaling, which allows the determination of position relative to - and the identity of - remaining tissue.

Michael Levin, PhD., Associate Member of the Staff, said, "This research has important implications for understanding the signaling necessary to build (or re-build) complex structures. By understanding how cells communicate through gap junctional channels we can gain a greater understanding of how we can possibly direct this process in tissues that don't currently regenerate; this has clear applications towards induction of regeneration in biomedical settings." Dr. Levin and his team ultimately hope to gain an understanding of how adult stem cells are controlled by gap-junctional communication (GJC). As reported in the November 15 issue of Developmental Biology, Dr. Levin's research team cloned and characterized the expression of twelve members of the innexin gene family during planarian regeneration. Innexins are proteins which make up gap junctions, and their expression was detected throughout the worms and in regeneration blastemas, undifferentiated cells from which an organ or body part develops, consistent with a role in long-range signaling relevant to specification of blastema positional identity.

Dr. Levin and Taisaku Nogi closed down the gap junctions to determine the impact on regeneration. As a result, the planaria often grew back two heads rather than a head and tail. The loss of GJC function had a direct impact on the regeneration process; without this communication the planaria cells at the posterior end became re-specified and formed a normal head, complete with brain, eyes, etc.. This is an example of a high-level "master" control signal. "If we can learn how to send appropriate signals through gap junctions, we may be able to tell the system to make a complex structure as needed." said Levin.

Michael Levin, PhD. is an Associate Member of the Staff in The Forsyth Institute Department of Cytokine Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his team examine the processes governing large-scale pattern formation and biological information storage during animal embryogenesis. The lab's investigations are directed toward understanding the mechanisms of signaling between cells and tissues that allows a biological system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.
-end-
The Forsyth Institute is the world's leading independent organization dedicated to scientific research and education in oral, craniofacial and related biomedical sciences.

The Forsyth Institute is a nonprofit research institute focused on oral, craniofacial and related biomedical science.

Forsyth Institute

Related Regeneration Articles from Brightsurf:

Protein influences regeneration of vascular cells
Through their basic research, physicians at the Heart Center of the University Hospital Bonn have discovered how the communication between individual cells can be influenced with the help of a specific protein.

How airway cells work together in regeneration and aging
Researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have identified the process by which stem cells in the airways of the lungs switch between two distinct phases -- creating more of themselves and producing mature airway cells -- to regenerate lung tissue after an injury.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Sensing infection, suppressing regeneration
UIC researchers describe an enzyme that blocks the ability of blood vessel cells to self-heal.

Adult fly intestine could help understand intestinal regeneration
Intestinal epithelial cells (IECs) are exposed to diverse types of environmental stresses such as bacteria and toxins, but the mechanisms by which epithelial cells sense stress are not well understood.

Fish reveal limb-regeneration secrets
What can fish teach scientists about limb regeneration? Quite a bit, as it turns out.

The regeneration of a cell depends on where it is positioned
Researchers at the Nara Institute of Science and Technology (NAIST) report a new single-cell RNA sequencing technology, single cell-digital gene expression, which can measure the transcriptome while preserving the positional information of the cell in the tissue.

The genetics of regeneration
Led by Assistant Professor of Organismic and Evolutionary Biology Mansi Srivastava, a team of researchers is shedding new light on how animals perform whole-body regeneration, and uncovered a number of DNA switches that appear to control genes used in the process.

Blood holds key to liver regeneration
The liver is the only organ in the body that can regenerate.

Electrical signals kick off flatworm regeneration
In a study publishing March 5 in Biophysical Journal, scientists report that electrical activity is the first known step in the tissue-regeneration process of planarian flatworms, starting before the earliest known genetic machinery kicks in and setting off the downstream activities of gene transcription needed to construct new heads or tails.

Read More: Regeneration News and Regeneration Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.