Model identifies genes that induce normal skin cells to become abnormal

November 15, 2005

Northwestern University researchers have developed a novel, three-dimensional model that allows scientists to observe how interacting with the microenvironment of metastatic melanoma cells induces normal skin cells to become similar to aggressive cancer cells that migrate and spread throughout the body.

The model, developed by Mary J. C. Hendrix and colleagues at Children's Memorial Research Center, consists of a three-dimensional collagen matrix preconditioned by malignant melanoma cells. Hendrix is president and scientific director of the Children's Memorial Research Center, professor of pediatrics at Northwestern University Feinberg School of Medicine and a member of the executive committees of The Robert H. Lurie Comprehensive Cancer Center and the Center for Genetic Medicine at Northwestern University.

The model was described in an article in the Nov. 15 issue of Cancer Research.

"Our findings offer new insights into the influence of the tumor cell microenvironment on the transformation of normal skin cells, as well as on genetic triggering mechanisms and signaling pathways that could be targeted for novel therapeutic strategies to inhibit the spread of melanoma," Hendrix said.

Metastatic cancer cells are characterized by increased tumor cell invasion and migration, as well as an undifferentiated, or "plastic," nature.

The Hendrix lab has hypothesized that this poorly differentiated cell type serves as an advantage to aggressive cancer cells by enhancing their ability to metastasize virtually undetected by the immune system. The group's current study tested the hypothesis that the microenvironment of metastatic melanoma cells could induce benign skin cells to become cancer-like.

The researchers seeded a particularly aggressive form of human metastatic melanoma cells onto a three-dimensional collagen matrix and allowed the cells to precondition the microenvironment for several days. The malignant melanoma cells were removed and the matrix was left intact.

Then, normal human skin cells were seeded onto the melanoma-preconditioned matrix and were allowed to remain for several days.

After this period, the previously normal cells seeded onto the matrix preconditioned by the metastatic melanoma were reprogrammed to express genes (produce specific gene proteins) associated with a highly plastic cell type similar to the aggressive melanoma cells used in the study.

Removal of the "transdifferentiated" skin cells from the melanoma microenvironment caused the cells to revert to their original appearance.

"There were no significant genetic changes between normal skin cells grown on an untreated matrix and those exposed to a matrix preconditioned by human metastatic melanoma cells, further supporting the hypothesis that "epigenetic" induction of changes in skin cell gene expression is directly related to exposure to the metastatic microenvironment," the authors said.

Hendrix's co-researchers on the study were Elizabeth A. Seftor; Kevin M. Brown; Lynda Chin; Dawn A. Kirshmann; William W. Wheaton; Alexei Protopopov; Bin Feng; Yoganand Balagurunathan; Jeffrey M. Trent; Brian J. Nickoloff; and Richard E. B. Seftor, from Northwestern University; Harvard Medical School; Tgen; and Loyola University.
-end-
This research was supported by grants from the National Institutes of Health/National Cancer Institute (CA59702); the Michael Sweig Foundation; and the Mazza Foundation, as well as NIH grants CA93947; CA59327; and CA27502.

Northwestern University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.