Synaptic connections need nurturing to retain their structure and keep outsiders at bay

November 15, 2005

The ability of the brain to transmit and process information requires a lifelong commitment to maintaining the integrity of synapses--the special connections that permit the passage of nerve impulses from one nerve cell to another, according to investigators at St. Jude Children's Research Hospital and colleagues in Hokkaido University School of Medicine (Japan). A report on this work appears in the November 15 issue of Nature Neuroscience.

This long-term commitment requires proteins called synaptotrophins, the prototype of which is Cbln1, to maintain countless millions of synapses in good working order, the researchers said. In the absence of such proteins, the synapses weaken and eventually fall apart. This not only compromises nerve transmission, but also provides the opportunity for other nerves to extend their axons toward these faltering synapses and make inappropriate connections that further disrupt brain function.

"Traditionally, studies in this field emphasized the development of the nervous system, and focused on how axons navigate to the correct part of the brain and then recognize and make specific synaptic contacts with the correct type of nerve cells," said James I. Morgan, Ph.D., a member and co-chair of the Department of Developmental Neurobiology at St. Jude. "It now appears that there are other processes at work throughout adult life that maintain the integrity and function of these connections once they have formed."

The idea that synapses require maintenance factors in the adult is not new, although the identification of specific substances that contribute to this process has proven elusive, Morgan said. Therefore, the researchers used a laboratory model of the cerebellum to identify proteins that maintain a specific set of synaptic connections. Using this model they found that Cbln1 maintains correct synaptic connections after they have been established.

The St. Jude team showed that Cbln1 maintains the connection between two types of nerves--Purkinje cells and granule cells. Purkinje cells are large nerves that are aligned like dominos across the upper part of the cerebellum and send information to other parts of the brain. Parallel fibers are the axons of granule cells and they form synapses with the dendrites of Purkinje cells. The investigators showed that granule cells release Cbln1 from the ends of their axons--the parallel fibers--in order to maintain their synaptic connections with these dendrites. Dendrites are threadlike branches on nerves that conduct incoming impulses from synapses to the body of the nerve cell.

When the investigators studied the electrical activity at the synapse between granule and Purkinje cells in models that lacked the gene for cbln1 (cbln1-/-), they found that the signals in Purkinje cells stimulated by granule cells were consistently smaller than normal. In addition, the number of synapses between parallel fibers and Purkinje cells in cbln1-/- models was markedly reduced compared to cbln+/+ models. This was because the endings of the axons from granule cells (the presynapse) progressively detached from Purkinje cells. However, the specialized regions of Purkinje cell dendrites that participate in the synapse (postsynaptic spines), were still present in normal numbers. But these unoccupied spines led to a second synaptic abnormality in the cbln1-/- model: the pattern of synapses between the Purkinje cells and another type of nerve, called the climbing fibers, was abnormal. Normally, only one climbing fiber makes a synapse with a particular Purkinje cell. But in the cbln1-/- models many climbing fibers had grown into the area of the cerebellum where Purkinje cells normally form these single synapses with parallel fibers; and these climbing fibers had established many synaptic contacts on each Purkinje cell at sites previously occupied by parallel fibers.

"Nerves are territorial and respond to signals that keep other types of nerves out of their area of the brain unless they have legitimate business there," Morgan said. "Without proteins like Cbln1 in the brain, some nerves extend their axons into neighboring territories, usurping abandoned postsynaptic sites and disrupting normal function."

The researchers also found that Cbnl1 plays a critical role in maintaining the molecular mechanisms that underlie long-term depression (LTD) at the parallel fiber-Purkinje cell synapse. LTD, an experience-dependent modification in the response of a nerve to stimulation, is viewed as a molecular form of memory. The molecular machinery that produces LTD is thought to be located in Purkinje cells. This suggests that Cbln1 released by granule cells must somehow influence LTD in Purkinje cells, Morgan said. The authors propose this occurs through a protein in the postsynaptic spine (dendrites) of Purkinje cells called the orphan delta-2 glutamate receptor. They note that models that lack delta-2 glutamate receptor in Purkinje cells are nearly identical to models that lack Cbln1 in granule cells. This suggests that delta-2 glutamate receptor somehow mediates the action of secreted Cbln1. As both delta-2 glutamate receptor and Cbln1 are members of larger families of proteins that have distinct patterns of expression throughout the brain, this type of interaction might provide a way to ensure that the correct synaptic contacts form between different sets of nerve cells.

"Our findings are a significant step in our goal of understanding how the brain maintains its synaptic integrity," Morgan said. "Moreover, these findings open the possibility that disruption of synaptotrophin function could play a role in the development of neurological and psychiatric disorders. Therefore, these proteins and the pathways through which they function might represent potential targets for therapeutic intervention in neurological and psychiatric diseases."

Other authors of the paper include Hirokazu Hirai (currently at Japan Science and Technology Agency, Kanazawa), Zhen Pang (currently at Roche Palo Alto, Palo Alto, Calif.), Dashi Bao, Leyi Li, Jennifer Parris, and Yongqi Rong (St. Jude); Taisuke Miyazaki, Eriko Miura, and Masahiko Watanabe (Hokkaido University School of Medicine, Sapporo, Japan) and Michisuke Yuzaki (currently at Keio University School of Medicine, Tokyo, Japan).
-end-
This work was supported in part by the National Institutes of Health, the Toray Science and Technology Grant, Japanese Grants-in-aid for Scientific Research, a Cancer Center Support Core Grant and ALSAC.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

St. Jude Children's Research Hospital

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.