'Trojan Horse' agent halts bone metastasis in mice

November 15, 2006

HOUSTON -- A novel vascular targeting agent completely prevented the development of bone tumors in 50 percent of the mice tested in a preclinical study, providing early evidence that it could treat, or thwart, growth of tumors in bone, a common destination for a number of cancers when they start to spread.

Researchers at The University of Texas M. D. Anderson Cancer Center reported in the journal Cancer Research that this "Trojan Horse" agent, VEGF121/rGel, stopped specialized cells within the bone from chewing up other bone material to make room for the implanted tumor to grow.

Although this study tested the ability of VEGF121/rGel to halt the growth of human prostate cancer cells in the bones of mice, investigators say it likely could help prevent the growth of other cancers in bones such as breast, multiple myeloma, lung and renal cell.

"Many tumors invade bone in the same way, so these findings suggest it may be possible to shut down this process regardless of the tumor type," says the study's lead author, Michael G. Rosenblum, Ph.D., professor in the Department of Experimental Therapeutics. "If that could be done - and we are a long way from determining if it is possible - we may be able to offer the first treatment that specifically targets bone metastasis."

The study also revealed critical information about the role of vascular endothelial growth factor (VEGF) in the development of tumors in bone, says Rosenblum. VEGF is a signaling protein involved in the creation of new blood vessels, but in this study the researchers found that it plays a surprising role in the remodeling of bone tissue.

In the normal maintenance of bones, a balance exists between activity of cells known as osteoclasts, which break down and resorb bone matrix, and osteoblasts, which form new bone. Researchers know that tumor cells that metastasize to bones release VEGF, but what they did not know is whether the protein interrupted bone maintenance or promoted growth of blood vessels to feed the neophyte cancer, Rosenblum said

To find out, Rosenblum designed an experiment with VEGF121/rGel, an agent he and his colleagues began to develop several years ago. They created the drug by fusing the smallest of VEGF proteins (VEGF 121) to a genetically engineered toxin, gelonin, derived from a plant that grows wild in India, and used bacteria to produce the fusion protein. The agent is designed to enter new blood vessel cells in tumors through expressed VEGF receptors and, once inside, the "Trojan Horse" toxin destroys the cell, disrupting the ability of tumors to form blood vessels to supply the nutrients they need to grow. Animal studies previously conducted by the researchers have shown that the protein can selectively destroy blood vessels feeding human solid tumors.

In this study, investigators implanted human prostate cancer cells, which are highly metastatic to bone, directly into the leg bone marrow of experimental mice in order to simulate a bone metastasis. A week later, they treated the animals with five staggered doses of VEGF121/rGel delivered through intravenous injections.

Half of the treated mice did not develop any bone tumors, Rosenblum says. "There was no evidence of cancer growth," he says, adding, "We don't know why the treatment didn't work in the other half of the mice, but we may have started therapy too late."

Rosenblum and his research team then found that VEGF121/rGel dramatically reduced the number of osteoclast cells in the leg bones and further research demonstrated that pre-osteoclast like cells, known as monocytes, had been expressing a receptor, Flt-1, designed to latch on to the VEGF protein secreted by cancer cells.

When activated by maturation factors including VEGF, the pre-osteoclasts differentiated into mature osteoclasts and chew up bone tissue, providing the tumor new space to grow. The mature osteoclast cells themselves do not express the Flt-1 receptor.

According to Rosenblum, the VEGF121/rGel agent entered the immature cells via the Flt-1 receptor and destroyed them, shutting down tumor growth. "This was a surprise to us," he says. "We had not expected these cells to be killed at all because we knew, through our earlier experiments, that VEGF121/rGel destroyed blood vessels by entering a different cell surface receptor, one which is not expressed on pre-osteoclasts."

Thus, in the bone, VEGF121/rGel may be working through two different VEGF receptors. It stops the bone destruction needed for the cancer to grow and may inhibit blood vessel growth to the metastasized tumor, Rosenblum says.

"The fact that this form of VEGF targeting works on different cell receptors in blood vessels and in bone cells is a unique finding that could be clinically significant, not only to treating cancer but other bone disorders," he says. "In the least, this study helps us understand more about how VEGF operates inside the body and how it is involved in bone remodeling."

Rosenblum said that phase I human clinical trials testing VEGF121/rGel are expected to open shortly at M. D. Anderson.
-end-
EMBARGOED FOR RELEASE UNTIL 12:01 A.M. (EDT), WEDNESDAY, NOV. 15, 2006 Written by: Renee Twombly

The study was funded by the Clayton Foundation for Research (KAM and MGR), the National Institutes of Health Grant CA96797 (NMN), the Prostate Foundation (NMN), the Prostate SPORE Career Development Award (BGD), and the Gillson Longenbaugh Foundation (PET) and by Peregrine Pharmaceuticals, Inc (PET). Rosenblum's co-authors include, from M. D. Anderson: co-first authors Khalid A. Mohamedali, Ph.D. and Ann T. Poblenz, Ph.D., Charles Sikes, Nora M. Navone, M.D., Ph.D.; Bryant G. Darnay, Ph.D.; and Philip E. Thorpe, Ph.D. from The University of Texas Southwestern Medical Center.

University of Texas M. D. Anderson Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.