Change in temperature uncovers genetic cross talk in plant immunity

November 15, 2010

Like us, plants rely on an immune system to fight off disease. Proteins that scout out malicious bacterial invaders in the cell and communicate their presence to the nucleus are important weapons in the plant's disease resistance strategy. Researchers at the University of Missouri recently "tapped" into two proteins' communications with the nucleus and discovered a previously unknown level of cross talk. The discovery adds important new information about how plant proteins mediate resistance to bacteria that cause disease and may ultimately lead to novel strategies for boosting a plant's immune system.

Special proteins in the plant, called resistance proteins, can recognize highly specific features of proteins from pathogen, called effector proteins. When a pathogen is detected, a resistance protein triggers an "alarm" that communicates the danger to the cell's nucleus. The communication between the resistance protein and nucleus occurs through a mechanism called a signaling pathway.

"The signaling pathway is like a telephone wire that stretches between each resistance protein all the way to the nucleus," said Walter Gassmann, senior author of the study and associate professor of plant sciences in the Christopher S. Bond Life Sciences Center at the University. "Until now, evidence suggested that, among certain classes of resistance proteins, these wires don't cross -- one resistance protein can't hear what another one is saying."

But in a recent study, Gassmann and his MU colleagues -- post-doctoral researchers Sang Hee Kim and Saikat Bhattacharjee, graduate students Fei Gao and Ji Chul Nam, and former undergraduate student Joe Adiasor -- "tapped" into these lines and found evidence for cross talk between two different resistance proteins.

The discovery was made while studying another plant protein, SRFR1, which helps to moderate the immune response of the wild mustard plant Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. The researchers were interested in why removal of the SRFR1 gene resulted in a plant with an immune system that was always activated. They traced the effect back to expression of the resistance protein, SNC1.

"The connection between SRFR1 and SNC1 was somewhat surprising," said Gassmann. "We identified SRFR1 based on its effect on the plant immune response to the bacterial effector protein AvrRps4, which is usually detected by the resistance protein RPS4, not SNC1."

This class of plant resistance proteins has been thought to be highly specific detectors, meaning each member responds to a different effector protein.

"Based on our work, we think part of the answer is that both SNC1 and RPS4 physically associate with SRFR1. In other words, SRFR1 is where the SNC1 and RPS4 telephone wires get crossed."

The researchers tapped into this cross talk while studying temperature effects on resistance. They found that both proteins, SNC1 and RPS4, contribute to detection of AvrRps4 at 22 degrees Celsius, but only RPS4 does so at 24 degrees Celsius. Gassmann speculated that the temperature dependence may explain why this cross talk had not been previously observed.

"The discovery adds important new knowledge about the underlying mechanism of how plants fight off bacterial infection," said Gassmann, who is also a member of the University's Interdisciplinary Plant Group.
-end-
The new research was funded by the National Science Foundation and is reported in the November 4 issue of PLoS Pathogens.

University of Missouri-Columbia

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.