Nav: Home

Once inside a tumor, our immune cells become traitors

November 15, 2016

New research has found a subset of our immune cells (called regulatory T cells) that are highly abundant in the tumor microenvironment and are particularly good at suppressing the anticancer immune response. In two independent studies, published November 15 in Immunity, scientists describe the distinct features and differences in molecules expressed by regulatory T cells inside of human breast, colon, and lung tumors compared to normal tissue that could be potential biomarkers or therapeutic targets.

Both sets of researchers hope to use what they've learned about the unique properties of regulatory T cells in tumor sites to improve cancer immunotherapies--drugs that stimulate immune cells to attack cancer cells. While these treatments have been successful for some types of tumors, such as melanoma, up to 40% of patients report serious adverse events.

"Our working hypothesis is that most of the adverse effects that patients experience with these immunotherapy treatments is because they are targeting molecules that are present both on regulatory T cells in the tumor and regulatory T cells outside of the tumor," says Sergio Abrignani, co-lead author on one of the studies with Massimiliano Pagani, both of the Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" and Università degli Studi di Milano in Italy.

"If we target molecules that are selectively present in the tumors, then we would have comparable efficacy and fewer adverse events," adds Pagani. "We are discovering a lot of new markers for these cells that can be used to make future therapies safer."

Their study, part of the International Human Epigenetics Consortium, specifically analyzed tissue samples collected from nearly 200 patients with colon and lung cancer and compared them to normal tissue and peripheral blood. The researchers identified specific signature molecules and genes not previously associated with regulatory T cells that could be detected in both primary and metastatic tumors. Certain molecules may even be potential biomarkers for poor prognosis.

"We know that tumors that are highly infiltrated with regulatory T cells are bad, but our paper also shows that tumors with the highest expression of signature molecules on intratumoral regulatory T cells had the worst outcomes," Abrignani says, noting that clinical trials on new biomarkers and immunotherapies inspired by this study could begin in as soon as two years. "We've set the stage for a bunch of important studies that must be done as soon as possible."

The other Immunity study, led by Alexander Rudensky of the Ludwig Center at Memorial Sloan Kettering Cancer Center, looked specifically at the distinct feature of regulatory T cells from over 100 human breast tumors removed during surgery. His group found that compared to normal tissue and peripheral blood, breast tumors possess an increased presence of regulatory T cells and that the most aggressive breast cancers have the highest number of the cells.

In the analysis of the immune cells by Rudensky's team, the most notable contrast was increased expression of chemokine receptor protein CCR8 in the tumor-resident cells in breast and other cancers (also found to be overexpressed in colon and lung tumors in Abrignani and Pagani's study). Why CCR8 may be significant is still unknown, but it offers itself as another potential target for immunotherapy.

"What's remarkable is the differential expression of CCR8; it is a very clear and clean marker that distinguishes regulatory T cells in the tumor," says Rudensky, also of the Howard Hughes Medical Institute. "This suggests one path to a more selective strategy to deplete regulatory T cells present in breast and other types of cancer."

Many questions still remain about the relationship between regulatory T cells and cancer, as well as why some of their unique properties promote immunosuppression. It will be helpful to learn, for example, why more aggressive tumors have an increased number of regulatory T cells--are they better at recruiting the cells or are there more at the tumor to begin with?--as well as what triggers from the tumors are changing the regulatory T cells' behavior.

"It is a really exciting time for both basic researchers and cancer biologists as we reveal a more complete picture of the interactions between different immune cell types and the tumor microenvironment," Rudensky says.
-end-
Immunity, De Simone, Arrigoni, Rossetti, and Gruarin et al.: "Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells" http://www.cell.com/immunity/fulltext/S1074-7613(16)30432-0 DOI: 10.1016/j.immuni.2016.10.021

Immunity, Plitas and Konopacki et al.: "Regulatory T cells exhibit distinct features in human breast cancer" http://www.cell.com/immunity/fulltext/S1074-7613(16)30443-5 DOI: 10.1016/j.immuni.2016.10.032

Immunity (@ImmunityCP), published by Cell Press, is a monthly journal that reports the most important advances in immunology research. Topics include: immune cell development and senescence, signal transduction, gene regulation, innate and adaptive immunity, autoimmunity, infectious disease, allergy and asthma, transplantation, and tumor immunology. Visit: http://www.cell.com/immunity. To receive Cell Press media alerts, contact press@cell.com.

About IHEC

The International Human Epigenome Consortium (IHEC) is a global consortium with the primary goal of providing free access to high-resolution reference human epigenome maps for normal and disease cell types to the research community. IHEC members support related projects to improve epigenomic technologies, investigate epigenetic regulation in disease processes, and explore broader gene-environment interactions in human health. Current full members of IHEC include: AMED-CREST/IHEC Team Japan; DLR-PT for BMBF German Epigenome Programme DEEP; CIHR Canadian Epigenetics Environment, and Health Research Consortium (CEEHRC); European Union FP7 BLUEPRINT Project; Hong Kong Epigenomics Project; KNIH Korea Epigenome Project; the NIH/NHGRI ENCODE Project; the NIH Roadmap Epigenomics Program; and the Singapore Epigenome Project. The IHEC Data Portal can be used to view, search and download the data released by the different IHEC-associated projects. For more information, please visit: http://ihec-epigenomes.org/

Cell Press

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...