Nav: Home

Novel mapping technique targets gene therapy to hibernating heart muscle

November 15, 2016

New Rochelle, NY, November 15, 2016--Gene therapy to repair damaged heart muscle is most likely to succeed if it can be injected at the site of ischemia where there is viable myocardium with reduced contractile ability, and a new technique that combines imaging and electroanatomical mapping does just that. A study of this novel approach that shows increased blood flow in treated areas in patients with refractory angina is published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Human Gene Therapy website until December 15, 2016.

Seppo Ylä-Herttuala, Kuopio University Hospital and University of Eastern Finland (Kuo-pio, Finland), together with coauthors Antti Kivelä, Antti Hedman, and Juha Hartikainen, and Antti Saraste and Juhani Knuuti, from Turku University Hospital, Finland, describe their method for targeted cardiac gene transfer in the article entitled "Intramyocardial Gene Therapy Directed to Hibernating Heart Muscle Using a Combination of Electromechanical Mapping and Positron Emission Tomography."

The researchers use a combination of electromechanical mapping with a NOGA system and positron emission tomography (PET) radiowater perfusion imaging to create 2-dimensional bull's eye maps that guide the injection of the gene therapy into the heart muscle. They tar-get a site that has suffered ischemic damage, but is viable as shown by reduced contractile ability, to achieve the best possible outcome.

"Dr. Ylä-Herttualla's milestone clinical trial results demonstrate how gene therapy for heart disease can be rendered much more specific," says Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Worcester, MA.
-end-
About the Journal

Human Gene Therapy, the Official Journal of the European Society of Gene and Cell Therapy, British Society for Gene and Cell Therapy, French Society of Cell and Gene Therapy, German Society of Gene Therapy, and five other gene therapy societies, is an authoritative peer-reviewed journal published monthly in print and online. Led by Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Human Gene Therapy presents reports on the transfer and expression of genes in mammals, including humans. Related topics include improvements in vector development, delivery systems, and animal models, particularly in the areas of cancer, heart disease, viral disease, genetic disease, and neurological disease, as well as ethical, legal, and regulatory issues related to the gene transfer in humans. Its companion journals, Human Gene Therapy Methods, published bimonthly, focuses on the application of gene therapy to product testing and development, and Human Gene Therapy Clinical Development, published quarterly, features data relevant to the regulatory review and commercial development of cell and gene therapy products. Tables of contents for all three publications and a free sample issue may be viewed on the Human Gene Therapy website.



About the Publisher


Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Nucleic Acid Therapeutics, Tissue Engineering, Stem Cells and Development, and Cellular Reprogramming. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Gene Therapy Articles:

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.
Using gene therapy to treat chronic traumatic encephalopathy
A new study shows the feasibility of using gene therapy to treat the progressive neurodegenerative disorder chronic traumatic encephalopathy (CTE).
New technology allows control of gene therapy doses
Scientists at Scripps Research in Jupiter have developed a special molecular switch that could be embedded into gene therapies to allow doctors to control dosing.
Gene therapy: Development of new DNA transporters
Scientists at the Institute of Pharmacy at Martin Luther University Halle-Wittenberg (MLU) have developed new delivery vehicles for future gene therapies.
Non-viral gene therapy to speed up cancer research
A new treatment method promises to speed up gene therapy research and could bring new, patient friendly cancer treatments to market faster.
Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.
Gene therapy for blood disorders
Delivering gene-regulating material to cells that live deep in our bone marrow and direct the formation of blood cells.
Realizing the potential of gene therapy for neurological disorders
Promising findings from preclinical animal studies show the potential of gene therapy for treating incurable neurological disorders.
Gene therapy vectors carrying the telomerase gene do not increase the risk of cancer
Researchers from the Spanish National Cancer Research Centre (CNIO) have shown in a new study that the gene therapy with telomerase that they have developed, and which has proven to be effective in mice against diseases caused by excessive telomere shortening and ageing, does not cause cancer or increase the risk of developing it, even in a cancer-prone setting.
Study advances gene therapy for glaucoma
In a study published today in the scientific journal Investigative Ophthalmology and Visual Science, Kaufman and Curtis Brandt, a fellow professor of ophthalmology and visual sciences at UW-Madison, showed an improved tactic for delivering new genes into the eye's fluid drain, called the trabecular meshwork.
More Gene Therapy News and Gene Therapy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.