K computer takes first place on HPCG benchmark

November 15, 2016

On November 16, the K computer took first place in the HPCG benchmark, a new index developed to create a more realistic view of supercomputer performance compared to the commonly used LINPACK benchmark. This success, which surpasses the second place achieved in 2014 and 2015, was made possible by significant improvements of the performance of the system and applications in the two intervening years.

The HPCG (High Performance Conjugate Gradient) benchmark measures how fast a computer can solve symmetric sparse linear system equations using the conjugate gradient method preconditioned with a multi-grid symmetric Gauss-Seidel smoother. Problems of this type are typically encountered in actual engineering and industrial applications, and require a balance between calculation performance, memory performance and communication performance, unlike LINPACK, which looks at calculation speed alone.

For this competition, all of the K computer's 82,944 compute nodes were used, achieving a performance of 602 teraflops, a score quite higher than the 461 teraflops it reached when taking second place in 2014. This new figure is higher than the supercomputers that placed higher than the K computer in the TOP500 rankings, demonstrating outstanding performance in various science and engineering fields.

According to Kimihiko Hirao, director of the RIKEN Advanced Institute for Computational Science, "Combined with the fact that the K computer took seventh place on the TOP500 list and first place on the Graph 500 list this year, this achievement demonstrates the high performance of our supercomputer in general applications, making it a powerful tool for industrial and scientific applications in a wide range of fields."

According to Jack Dongarra of the University of Tennessee, who contributed to the development of the benchmark, "The K computer is number one on the HPCG list showing that a well-balanced architecture with a good floating point rate and a good memory transfer rate allows high performance for a wide range of scientific applications."

The award will be presented at SC16, the high-performance computing conference, in Salt Lake City, Utah.


Related Computer Articles from Brightsurf:

UCLA computer scientists set benchmarks to optimize quantum computer performance
Two UCLA computer scientists have shown that existing compilers, which tell quantum computers how to use their circuits to execute quantum programs, inhibit the computers' ability to achieve optimal performance.

Digitize your dog into a computer game
Researchers from CAMERA at the University of Bath have developed motion capture technology that enables you to digitise your dog without a motion capture suit and using only one camera.

Stabilizing brain-computer interfaces
Researchers from Carnegie Mellon University (CMU) and the University of Pittsburgh (Pitt) have published research in Nature Biomedical Engineering that will drastically improve brain-computer interfaces and their ability to remain stabilized during use, greatly reducing or potentially eliminating the need to recalibrate these devices during or between experiments.

Computer-generated genomes
Professor Beat Christen, ETH Zurich to speak in the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Christen will describe how computational algorithms paired with chemical DNA synthesis enable digital manufacturing of biological systems up to the size of entire microbial genomes.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems
The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

A computer that understands how you feel
Neuroscientists have developed a brain-inspired computer system that can look at an image and determine what emotion it evokes in people.

Computer program looks five minutes into the future
Scientists from the University of Bonn have developed software that can look minutes into the future: The program learns the typical sequence of actions, such as cooking, from video sequences.

Computer redesigns enzyme
University of Groningen biotechnologists used a computational method to redesign aspartase and convert it to a catalyst for asymmetric hydroamination reactions.

Mining for gold with a computer
Engineers from Texas A&M University and Virginia Tech report important new insights into nanoporous gold -- a material with growing applications in several areas, including energy storage and biomedical devices -- all without stepping into a lab.

Teaching quantum physics to a computer
An international collaboration led by ETH physicists has used machine learning to teach a computer how to predict the outcomes of quantum experiments.

Read More: Computer News and Computer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.