Volatility surprises arise in removing excess hydrogen

November 15, 2017

WASHINGTON, D.C., November 15, 2017 -- Excess hydrogen can cause problems in a variety of industries. It can corrode semiconductors, electronics, and nuclear fuel sitting in storage. It also poses an explosion hazard. To remove this extra hydrogen, chemists can use an organic compound called a hydrogen getter that chemically binds to several hydrogen atoms.

But sometimes, during this binding process -- called catalytic hydrogenation -- the partially hydrogenated products become volatile, melting and evaporating away before they can bind to more hydrogen atoms. Now, researchers have explored how and why this volatility varies during hydrogenation, suggesting that a previously underappreciated effect from carbon-hydrogen bonds in the molecule is the main culprit.

The new analysis, published in The Journal of Chemical Physics, from AIP Publishing, can help chemists identify the ideal conditions needed for catalytic hydrogenation so they can better remove excess hydrogen.

"This creates a model for the behavior of other organic getters, allowing us to predict their optimal operating temperatures and environments," said Long Dinh, a physicist at Lawrence Livermore National Laboratory.

Dinh and his colleagues focused on a getter called 1,4 bis(phenylethynyl)benzene, or DEB. To remove hydrogen, crystal flakes of DEB are mixed with catalysts in the form of solid pellets. The pellets are made from activated carbon -- whose porous structure provides abundant surface area -- coated with palladium nanoparticles. The palladium catalyst splits hydrogen molecules into hydrogen atoms, which can then bind to DEB and form carbon-hydrogen bonds.

DEB is a high-capacity getter, capable of binding with up to eight hydrogen atoms. Most researchers thought that as getters like DEB bind with more hydrogen atoms and enlarge, they become more volatile. At high operating temperatures, they can then vaporize away, drifting far from the catalytic pellets where there aren't any hydrogen atoms with which to bind. "You stop the hydrogenation process prematurely," Dinh said.

But the researchers found that in the first two steps of hydrogenation, when DEB forms two carbon-hydrogen bonds per step (the carbon-hydrogen bonds are created on opposite sides of the molecule's carbon chain), the molecule actually decreases in volatility. Only in subsequent steps of hydrogenation does DEB become more volatile.

To study how and why DEB changes in volatility, the researchers measured properties such as vapor pressures and melting points, probed molecular structure, and ran quantum mechanical computer simulations to model the hydrogenation process. Their analysis suggests that the carbon-hydrogen bonds in DEB play a key role in the molecule's volatile behavior.

During hydrogenation, hydrogen binds to carbon atoms in DEB. According to conventional thought, the resulting carbon-hydrogen bond is nonpolar -- neither end of the barbell structure is more negatively or positively charged than the other. But it turns out that the carbon end is slightly more negative, and the carbon-hydrogen bond forms a weak dipole, Dinh explained.

As a dipole, a carbon-hydrogen bond can attract or repel other carbon-hydrogen bonds in other DEB molecules. Depending on how the carbon-hydrogen bonds are arranged and how many there are in the intermediate DEB products, the molecules can either attract or repel one another, and thus be less or more volatile, respectively. Previous research had overlooked these collective interactions among carbon-hydrogen bonds in organic crystals, Dinh said.

From their analysis, the researchers determined that the optimal conditions for DEB hydrogenation is below about 175 degrees Fahrenheit, if done in a good vacuum. "Our results," Dinh said, "can be applied analogously to other catalytic organic hydrogen getter systems as well."
The article, "Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene," is authored by Hom N. Sharma, Elizabeth A. Sangalang, Cheng K. Saw, Gareth A. Cairns, William McLean, Robert S. Maxwell and Long N. Dinh. The article will appear in The Journal of Chemical Physics Nov. 15, 2017 [DOI: 10.1063/1.5001205]. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5001205.


The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.