What is the computational power of the universe?

November 15, 2017

Can a close look at the universe give us solutions to problems too difficult for a computer - even if we built a computer larger than a planet? Physicist Stephen Jordan reflects on this question in a new video by the National Institute of Standards and Technology (NIST), along with a new scientific paper that considers one particular tough problem the universe might answer.

In The Computational Power of the Universe, Jordan does not imagine what we could learn if humanity somehow converted the entire cosmos into a vast computing device (however marvelous a science-fiction premise that idea might make). Rather, he asks, now that the universe has undergone billions of years of change in accordance with the laws of nature, can we use what we see through our telescopes to gain insights into difficult computational problems? After all, computers crunch numbers to simulate complex change. What if we consider the cosmos to be the output of a 13.7-billion year computation?

Jordan's new paper - one in a series he and his colleagues are working on - looks at a specific example. One computer-stumping question is called the number partitioning problem: If you had a pile of millions of very large numbers and wanted to divide them into two equal piles, how would you do it? The math is so difficult that it's been considered as a practical basis for cryptography.

As it turns out, the universe has already processed a similar problem physically. Everywhere you look, empty space has a background energy density that is very close to zero. This near-zero value, which Einstein referred to as the Cosmological Constant, implies that the balance between energy contributions from different fields related to fundamental universal forces somehow got sorted out well enough that we ended up with a fairly stable material universe. In essence, we live in a particular solution to partitioning.

Are there other tough problems out there to which the universe holds a shortcut? ...to be continued.

National Institute of Standards and Technology (NIST)

Related Universe Articles from Brightsurf:

History of temperature changes in the Universe revealed
How hot is the Universe today? How hot was it before?

Gravity causes homogeneity of the universe
Gravity can accelerate the homogenization of space-time as the universe evolves.

Seeing the universe through new lenses
A new study by an international team of scientists revealed hundreds of new strong gravitational lensing candidates based on a deep dive into data collected for a US Department of Energy-supported telescope project in Arizona called the Dark Energy Spectroscopic Instrument.

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

This is how a 'fuzzy' universe may have looked
Scientists at MIT, Princeton University, and Cambridge University have found that the early universe, and the very first galaxies, would have looked very different depending on the nature of dark matter.

And then there was light: looking for the first stars in the Universe
Astronomers are closing in on a signal that has been travelling across the Universe for 12 billion years, bringing them nearer to understanding the life and death of the very earliest stars.

AI learns to model our Universe
An international team has used AI to create a 3D simulation of the Universe.

New voyage to the universe from DESHIMA
Researchers in Japan and the Netherlands jointly developed an originative radio receiver DESHIMA (Deep Spectroscopic High-redshift Mapper) and successfully obtained the first spectra and images with it.

A peek at the birth of the universe
The Square Kilometre Array (SKA) is set to become the largest radio telescope on Earth.

Exactly how fast is the universe expanding?
The collision of two neutron stars (GW170817) flung out an extraordinary fireball of material and energy that is allowing a Princeton-led team of astrophysicists to calculate a more precise value for the Hubble constant, the speed of the universe's expansion.

Read More: Universe News and Universe Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.