What's next for smart homes: An 'Internet of Ears?'

November 15, 2018

CLEVELAND--Houses have been getting progressively "smarter" for decades, but the next generation of smart homes may offer what two Case Western Reserve University scientists are calling an "Internet of Ears."

Today's smart home features appliances, entertainment systems, security cameras and lighting, heating and cooling systems that are connected to each other and the Internet. They can be accessed and controlled remotely by computer or smart-phone apps.

The technology of interconnecting commercial, industrial or government buildings, someday even entire communities, is referred to as the "Internet of Things," or IoT.

But a pair of electrical engineering and computer science professors in the Case School of Engineering have been experimenting with a new suite of sensors. This system would read not only the vibrations, sounds--and even the specific gait, or other movements--associated with people and animals in a building, but also any subtle changes in the existing ambient electrical field.

While still maybe a decade or so away, the home of the future could be a building that adjusts to your activity with only a few small, hidden sensors in the walls and floor and without the need for invasive cameras.

A building that 'listens'

"We are trying to make a building that is able to 'listen' to the humans inside," said Ming-Chun Huang, an assistant professor in electrical engineering and computer science.

"We are using principles similar to those of the human ear, where vibrations are picked up and our algorithms decipher them to determine your specific movements. That's why we call it the 'Internet of Ears.'"

Huang is leading the research related to human gait and motion tracking, while Soumyajit Mandal, the T. and A. Schroeder Assistant Professor of Electrical Engineering and Computer Science, focuses on vibration sensing and changes in the existing electrical field caused by the presence of humans or even pets.

"There is actually a constant 60 Hz electrical field all around us, and because people are somewhat conductive, they short out the field just a little," Mandal said. "So, by measuring the disturbance in that field, we are able to determine their presence, or even their breathing, even when there are no vibrations associated with sound.

Huang and Mandal published details of their research in October at the IEEE Sensors conference in New Delhi, India. A longer version of their results will appear in the journal IEEE Transactions on Instrumentation and Measurement early next year.

They've also tested the technology in conference rooms in the electrical engineering department on campus and in the Smart Living Lab at Ohio Living Breckenridge Village, a senior-living community in Willoughby, Ohio.

Mandal said they have used as few as four small sensors in the walls and floor of a room. As for privacy concerns, Mandal said the system would not be able to identify individuals, although it could be calibrated to recognize the different gaits of people.

Energy savings, building safety

They expect the system could provide many benefits.

"The first advantage will be energy efficiency for buildings, especially in lighting and heating, as the systems adjust to how humans are moving from one room to another, allocating energy more efficiently," Huang said.

Another benefit could be the ability to track and measure a building's structural integrity and safety, based on human occupancy--which would be critical in an earthquake or hurricane, for example, Huang said.

"This hasn't really been explored as far as we've seen, but we know that humans create a dynamic load on buildings, especially in older buildings," Huang said. "In collaboration with our colleague YeongAe Heo in the Civil Engineering department, we are trying to predict if there is going to be structural damage because of the increased weight or load based on the number of people on the floor or how they are distributed on that floor."
-end-
Case Western Reserve University is one of the country's leading private research institutions. Located in Cleveland, we offer a unique combination of forward-thinking educational opportunities in an inspiring cultural setting. Our leading-edge faculty engage in teaching and research in a collaborative, hands-on environment. Our nationally recognized programs include arts and sciences, dental medicine, engineering, law, management, medicine, nursing and social work. About 5,100 undergraduate and 6,200 graduate students comprise our student body. Visit

Note: Interviews can be arranged at an on-campus television studio (transmission via VYVX HD loop), by digital tape sync for audio, in-person or by phone.

Case Western Reserve University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.