Nav: Home

Which physical mechanism is responsible for magnetic properties of cuprates upon doping?

November 15, 2018

'We study collective electronic effects in various materials, especially in those that are characterized by fairly strong electron-electron interaction,' says Evgeny. 'This interaction leads to such effects as charge ordering, magnetism, superconducting state and others. In this article, we investigated how the properties of cuprates change when impurities are added to the system to reduce the electron concentration in the material. Usually such a process is called hole doping, and the absence of an electron is called a "hole."

It is known that cuprates are antiferromagnets in the normal state. Upon doping the change in the magnetic properties of various cuprates can occur in two scenarios: either antiferromagnetism is destroyed and goes into a canted antiferromagnetic state, or holes begin to form their own magnetic state, which is characterized by a certain wavenumber.

'In the compound that was studied, we witnessed the second scenario, in which antiferromagnetism is stabilized due to strong electron interactions. The holes form their magnetic state, which leaves the antiferromagnetic state unchanged increasing with doping,'explains Evgeny Stepanov. 'What is important is that this process occurs in a wide range of electron concentrations, this allows the antiferromagnetic state to be in resonance at a certain energy. It is still not known for certain which physical mechanism exactly leads to the appearance of superconductivity in these materials. Since we are not the only one studying these materials, there is a theory that it is this resonant antiferromagnetic that is responsible for the superconducting state in cuprates.'

Superconductivity is the property of materials to have zero electrical resistance. In this state, electrons can move freely in this material, transferring an electric charge. Usually, the superconducting state is realized at a sufficiently low temperature of several tens of degrees on the Kelvin scale and/or at high pressure. So, at room temperature, the superconducting state cannot be obtained yet.

From an experimental point of view, cuprates have already been well studied. Theoretically, it is quite difficult to understand what happens in these materials under the action of hole doping and why they exhibit such properties.

'The reason is very strong electron-electron interaction, which does not allow the use of standard theoretical methods for describing electronic properties in such materials,' said the scientist. 'Our task is to use the more advanced methods we developed, try to theoretically explain the presence of a resonant antiferromagnetic state and see what happens to this state upon doping.'

Thus, the results obtained by the authors of the article make it possible to determine which physical mechanism stabilize the resonant antiferromagnetic state, which is possibly responsible for high-temperature superconductivity in cuprates.
-end-
The study was carried out by the international group of scientist from Ural Federal University, University of Michigan, Moscow State Universities, Radboud University, Hamburg University and the Russian Quantum Center: Evgeny Stepanov, Lars Peters, Igor Krivenko, Alexander Lichtenstein, Mikhail Katsnelson and Alexey Rubtsov.

Ural Federal University

Related Electron Articles:

The fast dance of electron spins
Metal complexes show a fascinating behavior in their interactions with light, which for example is utilized in organic light emitting diodes, solar cells, quantum computers, or even in cancer therapy.
Novel mechanism of electron scattering in graphene-like 2D materials
Suggesting an unconventional way to manipulate the properties of 2D materials in the presence of a Bose-Einstein condensate, and an alternative strategy to design high-temperature superconductors.
Switching electron properties on and off individually
Electrons have different properties - and they all can be used to create order in solid objects.
Mechanical vibration generated by electron spins
Micro mechanical elements are indispensable components of modern electrical devices but the actuation of them requires electrical current.
Electron beam strengthens recyclable nanocomposite
Carbon fiber-enhanced thermoplastic polymer mechanical properties improve when irradiated with an electron beam, report researchers at Kanazawa University in the journal Composites Part A.
More Electron News and Electron Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...