Nav: Home

Cotton-based hybrid biofuel cell could power implantable medical devices

November 15, 2018

A glucose-powered biofuel cell that uses electrodes made from cotton fiber could someday help power implantable medical devices such as pacemakers and sensors. The new fuel cell, which provides twice as much power as conventional biofuel cells, could be paired with batteries or supercapacitors to provide a hybrid power source for the medical devices.

Researchers at the Georgia Institute of Technology and Korea University used gold nanoparticles assembled on the cotton to create high-conductivity electrodes that helped improve the fuel cell's efficiency. That allowed them to address one of the major challenges limiting the performance of biofuel cells - connecting the enzyme used to oxidize glucose with an electrode.

A layer-by-layer assembly technique used to fabricate the gold electrodes - which provide both the electrocatalytic cathode and the conductive substrate for the anode - helped boost the power capacity to as much as 3.7 milliwatts per square centimeter. Results of the research were reported October 26 in the journal Nature Communications.

"We could use this device as a continuous power source for converting chemical energy from glucose in the body to electrical energy," said Seung Woo Lee, an assistant professor in Georgia Tech's Woodruff School of Mechanical Engineering. "The layer-by-layer deposition technique precisely controls deposition of both the gold nanoparticle and enzyme, dramatically increasing the power density of this fuel cell."

Fabrication of the electrodes begins with porous cotton fiber composed of multiple hydrophilic microfibrils - cellulose fibers containing hydroxyl groups. Gold nanoparticles about eight nanometers in diameter are then assembled onto the fibers using organic linker materials.

To create the anode for oxidizing the glucose, the researchers apply glucose oxidase enzyme in layers alternating with an amine-functionalized small molecule known as TREN. The cathode, where the oxygen reduction reaction takes place, used the gold-covered electrodes, which have electrocatalytic capabilities.

"We precisely control the loading of the enzyme," Lee said. "We produce a very thin layer so that the charge transport between the conductive substrate and the enzyme is improved. We have made a very close connection between the materials so the transport of electrons is easier."

The porosity of the cotton allowed an increase in the number of gold layers compared to a nylon fiber. "Cotton has many pores that can support activity in electrochemical devices," explained Yongmin Ko, a visiting faculty member and one of the paper's co-authors. "The cotton fiber is hydrophilic, meaning the electrolyte easily wets the surface."

Beyond improving the conductivity of the electrodes, the cotton fiber could improve the biocompatibility of the device, which is designed to operate at low temperature to allow use inside the body.

Implantable biofuel cells suffer from degradation over time, and the new cell developed by the U.S. and Korean team offers improved long-term stability. "We have a record high power performance, and the lifetime should be improved for biomedical applications such as pacemakers," Lee said.

Pacemakers and other implantable devices are now powered by batteries that last years, but may still require replacement in a procedure that requires surgery. The biofuel cell could provide a continuous charge for those batteries, potentially extending the time that devices may operate without battery replacement, Lee added.

In addition, the biofuel cell could be used to power devices intended for temporary use. Such devices might be implanted to provide timed release of a drug, but would biodegrade over time without requiring surgical removal. For these applications, no battery would be included, and the limited power required could be provided by the biofuel cell.

Future goals of the research include demonstrating operation of the biofuel cell with an energy storage device, and development of a functional implantable power source. "We want to develop other biological applications for this," said Lee. "We'd like to go farther with other applications including batteries and high-performance storage."
-end-
In addition to those already named, the research team included Cheong Hoon Kwon, Dongyeeb Shin, Minseong Kwon and Jinhan Cho of Korea University, Jinho Park of Georgia Tech and Wan Ki Bae of SKKU Advanced Institute of Nano Technology at Sungkyunkwan University.

This work was supported by a National Research Foundation (NRF) grant funded by the Korean Ministry of Science, ICT & Future Planning (MSIP) (2018R1A2A1A05019452; 2016M3A7B4910619) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2017R1A6A3A04003192).

CITATION: Cheong Hoon Kwon, et al., "High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton," (Nature Communications 9, 2018) http://dx.doi.org/ 10.1038/s41467-018-06994-5

Georgia Institute of Technology

Related Glucose Articles:

What drives inflammation in type 2 diabetes? Not glucose, says new research
Research led by Barbara Nikolajczyk, Ph.D., disproved the conventional wisdom that glucose was the primary driver of chronic inflammation in type 2 diabetes.
ALS patients may benefit from more glucose
A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.
Artificial muscles powered by glucose
Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles.
Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.
Protein released from fat after exercise improves glucose
Exercise training causes dramatic changes to fat. Additionally, this 'trained' fat releases beneficial factors into the bloodstream.
WSU researchers create 3D-printed glucose biosensors
A 3D-printed glucose biosensor for use in wearable monitors has been created by Washington State University researchers.
Gut protein mutations shield against spikes in glucose
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk?
Glucose binding molecule could transform the treatment of diabetes
Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.
Nutrients may reduce blood glucose levels
One amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.
Cancer hijacks the microbiome to glut itself on glucose
A University of Colorado Cancer Center study published today in the journal Cancer Cell shows that leukemia actively undercuts the ability of normal cells to consume glucose, thus leaving more glucose available to feed its own growth.
More Glucose News and Glucose Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.