Nav: Home

Cotton-based hybrid biofuel cell could power implantable medical devices

November 15, 2018

A glucose-powered biofuel cell that uses electrodes made from cotton fiber could someday help power implantable medical devices such as pacemakers and sensors. The new fuel cell, which provides twice as much power as conventional biofuel cells, could be paired with batteries or supercapacitors to provide a hybrid power source for the medical devices.

Researchers at the Georgia Institute of Technology and Korea University used gold nanoparticles assembled on the cotton to create high-conductivity electrodes that helped improve the fuel cell's efficiency. That allowed them to address one of the major challenges limiting the performance of biofuel cells - connecting the enzyme used to oxidize glucose with an electrode.

A layer-by-layer assembly technique used to fabricate the gold electrodes - which provide both the electrocatalytic cathode and the conductive substrate for the anode - helped boost the power capacity to as much as 3.7 milliwatts per square centimeter. Results of the research were reported October 26 in the journal Nature Communications.

"We could use this device as a continuous power source for converting chemical energy from glucose in the body to electrical energy," said Seung Woo Lee, an assistant professor in Georgia Tech's Woodruff School of Mechanical Engineering. "The layer-by-layer deposition technique precisely controls deposition of both the gold nanoparticle and enzyme, dramatically increasing the power density of this fuel cell."

Fabrication of the electrodes begins with porous cotton fiber composed of multiple hydrophilic microfibrils - cellulose fibers containing hydroxyl groups. Gold nanoparticles about eight nanometers in diameter are then assembled onto the fibers using organic linker materials.

To create the anode for oxidizing the glucose, the researchers apply glucose oxidase enzyme in layers alternating with an amine-functionalized small molecule known as TREN. The cathode, where the oxygen reduction reaction takes place, used the gold-covered electrodes, which have electrocatalytic capabilities.

"We precisely control the loading of the enzyme," Lee said. "We produce a very thin layer so that the charge transport between the conductive substrate and the enzyme is improved. We have made a very close connection between the materials so the transport of electrons is easier."

The porosity of the cotton allowed an increase in the number of gold layers compared to a nylon fiber. "Cotton has many pores that can support activity in electrochemical devices," explained Yongmin Ko, a visiting faculty member and one of the paper's co-authors. "The cotton fiber is hydrophilic, meaning the electrolyte easily wets the surface."

Beyond improving the conductivity of the electrodes, the cotton fiber could improve the biocompatibility of the device, which is designed to operate at low temperature to allow use inside the body.

Implantable biofuel cells suffer from degradation over time, and the new cell developed by the U.S. and Korean team offers improved long-term stability. "We have a record high power performance, and the lifetime should be improved for biomedical applications such as pacemakers," Lee said.

Pacemakers and other implantable devices are now powered by batteries that last years, but may still require replacement in a procedure that requires surgery. The biofuel cell could provide a continuous charge for those batteries, potentially extending the time that devices may operate without battery replacement, Lee added.

In addition, the biofuel cell could be used to power devices intended for temporary use. Such devices might be implanted to provide timed release of a drug, but would biodegrade over time without requiring surgical removal. For these applications, no battery would be included, and the limited power required could be provided by the biofuel cell.

Future goals of the research include demonstrating operation of the biofuel cell with an energy storage device, and development of a functional implantable power source. "We want to develop other biological applications for this," said Lee. "We'd like to go farther with other applications including batteries and high-performance storage."
-end-
In addition to those already named, the research team included Cheong Hoon Kwon, Dongyeeb Shin, Minseong Kwon and Jinhan Cho of Korea University, Jinho Park of Georgia Tech and Wan Ki Bae of SKKU Advanced Institute of Nano Technology at Sungkyunkwan University.

This work was supported by a National Research Foundation (NRF) grant funded by the Korean Ministry of Science, ICT & Future Planning (MSIP) (2018R1A2A1A05019452; 2016M3A7B4910619) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2017R1A6A3A04003192).

CITATION: Cheong Hoon Kwon, et al., "High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton," (Nature Communications 9, 2018) http://dx.doi.org/ 10.1038/s41467-018-06994-5

Georgia Institute of Technology

Related Glucose Articles:

Injectable solution may provide weeks of glucose control
Biomedical engineers at Duke University have created a biopolymer that can provide weeks of glucose control with a single injection.
Sugar sponges sop up and release glucose as needed
Many diabetes patients must inject themselves with insulin, sometimes several times a day, while others take medications orally to control blood sugar.
Not such a 'simple' sugar -- glucose may help fight cancer and inflammatory disease
Scientists have just discovered that glucose, the most important fuel used in our bodies, also plays a vital role in the immune response.
Convenient and easy to use glucose monitoring and maintenance
A research group from the Center for Nanoparticle Research within the Institute for Basic Science has developed a convenient and accurate sweat-based glucose monitoring and maintenance device.
How rare sugars might help control blood glucose
In an era when the label 'natural' hits a sweet spot with consumers, some uncommon sugars emerging on the market could live up to the connotation.
Neuronal stimulation regulates appetite and glucose levels in mice
This week in the JCI, a study led by Michael Scott at the University of Virginia explores how stimulation of a subset of neurons that produce glucagon-like peptides can control appetite and glucose levels in lean and obese mice.
Renoprotective effects of sglt2 inhibitors: Beyond glucose reabsorption inhibition
In this manuscript we summarize the available data on the mechanisms that underlie the renoprotective properties of SGLT2 inhibitors.
Mouse models indicate burning more fat and less glucose could lead to diabetes
Making muscles burn more fat and less glucose can increase exercise endurance, but could simultaneously cause diabetes, says a team of scientists from Baylor College of Medicine and other institutions.
Immune system uses gut bacteria to control glucose metabolism
Researchers have discovered an important link between the immune system, gut bacteria and glucose metabolism -- a 'cross-talk' and interaction that can lead to type 2 diabetes and metabolic syndrome when not functioning correctly.
Researchers discover new regulator in glucose metabolism
A key genetic switch in the liver regulates glucose metabolism and insulin action in other organs of the body.

Related Glucose Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".