SwRI scientists map magnetic reconnection in Earth's magnetotail

November 15, 2018

SAN ANTONIO -- Nov. 15, 2018 -- Analyzing data from NASA's Magnetospheric Multiscale (MMS) mission, a team led by Southwest Research Institute (SwRI) has found that the small regions in the Earth's magnetosphere that energize the polar aurora are remarkably calm and nonturbulent.

The new observations, which also revealed intense electron jets associated with the regions where magnetic reconnection occurs, were outlined in a paper published in Science Nov. 15.

"On the sunward side, explosive magnetic reconnection events dump energy into Earth's magnetosphere, the region surrounding the Earth dominated by its magnetic field," said the paper's lead author, Dr. Roy Torbert, the heliophysics program director at SwRI's Department of Earth, Oceans and Space at the University of New Hampshire, Durham. "Reconnection on the night side is dumping energy into Earth's atmosphere, as electrons travel down magnetic field lines and excite aurora. The more we understand about these processes, the better we can understand and model how 'space weather' could affect the technology we depend on."

Magnetic reconnection -- which occurs in both natural plasma environments such as those in space and in laboratory fusion experiments -- is at the heart of space weather. Reconnection is responsible for explosive solar events, such as solar flares and coronal mass ejections, and drives disturbances in Earth's space environment. Such disturbances not only produce spectacular auroras, but also the high-energy electromagnetic radiation they send toward Earth can shut down electrical power grids and disrupt satellite-based communication and navigation systems.

NASA's four Magnetospheric Multiscale (MMS) satellites have spent the last three years studying magnetic reconnection in the near-Earth environment. For the first half of the mission, the satellites studied reconnection that occurs in the sunward side of Earth where the solar wind -- the constant flow of charged particles from the Sun -- pushes into Earth's magnetic field. The two sides connecting have different densities, which cause magnetic reconnection to occur asymmetrically, spewing electrons away at supersonic speeds. In the magnetotail, the trailing portion of the magnetosphere blown back by the solar wind, only the Earth's field lines are colliding, so the particles are accelerated nearly symmetrically.

"For the first time, we have observed the details of the energy dissipation regions where symmetric reconnection occurs," Torbert said. "We measured the aspect ratio of these remarkably small regions, just a few hundred kilometers in size. We're beginning to understand the efficiency of energy release and how it connects in our environment."

The unprecedented resolution and accuracy of the MMS measurements revealed these events last only a few seconds, producing extremely high velocity electron jets -- over 15,000 kilometers per second -- and intense electric fields and electron velocity distributions.

"The process appears to be very efficient," Torbert said. "Any turbulence is not strong enough to disturb discrete features of the electron velocity distributions created in the electromagnetic fields around the energy dissipation region."
-end-
These discoveries -- which have significant implications for space and solar physics, astrophysics and fundamental plasma physics -- were published Nov. 15 in Science [doi: 10.1126/science.aat2998 (2018)].

MMS is the fourth NASA Solar Terrestrial Probes Program mission. Goddard Space Flight Center built, integrated and tested the four MMS spacecraft and is responsible for overall mission management and mission operations. The principal investigator for the MMS instrument suite science team is based at SwRI in San Antonio, Texas. Science operations planning and instrument commanding are performed at the MMS Science Operations Center at the University of Colorado's Laboratory for Atmospheric and Space Physics in Boulder.

For more information: https://www.swri.org/industries/space-science.

Southwest Research Institute

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.