Nav: Home

Lichens are way younger than scientists thought

November 15, 2019

You've probably seen a lichen, even if you didn't realize it. If you've ever meandered through the forest and wondered what the crusty stuff on trees or rocks was, they're lichens, a combination of algae and fungi living together almost as if they were one organism. And since they can grow on bare rocks, scientists thought that lichens were some of the first organisms to make their way onto land from the water, changing the planet's atmosphere and paving the way for modern plants. A new study in Geobiology upends this history by delving deep into the DNA of the algae and fungi that form lichens and showing the lichens likely evolved millions of years after plants.

"When we look at modern ecosystems, and we see a bare surface like a rock, oftentimes lichens are the first thing to grow there, and eventually you'll get plants growing on there too," says Matthew Nelsen, lead author of the paper and a research scientist at the Field Museum. "People have thought that maybe that's the way ancient colonization of land worked, but we're seeing that these lichens actually came later in the game than plants."

Four hundred and eighty-five million years ago, Earth was very different from what we see today. Hardly anything lived on land. But lichens can live in extreme conditions. They can grow on bare rocks and break them down, helping to create the soil needed by complex plants with roots (called "vascular plants"). Scientists thought that lichens must have arrived on land before the vascular plants did and made the environment more hospitable. But Nelsen and his colleagues' work calls this timeline into question.

Nelsen didn't set out to disrupt lichen's status as some of the land's first colonizers. He was initially interested in finding out how the algae-fungus relationship that makes up lichens came to be. If lichens could update their relationship status on Facebook, it would definitely be "it's complicated." They're a product of symbiosis, a relationship where two species live together and both benefit. In this instance, the algae--or specialized blue-green algae called cyanobacteria--provide food and the fungi wraps around it creating a shelter. "The question of when lichens evolved and how many times fungi evolved the ability to form symbiotic relationships with algae has been a bit contentious in the past," says Nelsen.

But to accurately determine when lichens evolved, scientists needed to examine the evolutionary history of both the fungi and algae that make them up. The early lichen fossil record isn't very clear; it can be hard to tell lichen fossils apart from other fossils, and all the fossils that scientists know for sure are lichens are younger than the oldest complex plant fossils. So, the researchers used the fossils that were available to extrapolate the ages of family trees of lichen-forming fungi and algae. They compared these family trees with ages of fossil plants. The verdict: lichens probably evolved long after complex plants.

"Lichens aren't as old as we thought they were. They're a younger, newer sort of symbiosis and haven't been around forever, covering the earth long before there were plants and animals running around," says Nelsen.

Unearthing the age of lichens makes it clear that the pattern of modern lichens showing up on rocks before plants doesn't mean that lichens evolved before plants. "It provides a snapshot into what was going on deep in time on Earth, and when some of these groups started appearing," says Nelsen. And since lichens growing on soil can make the ground wetter, hold the soil in place, and influence the kind of nutrients present in soil, learning when lichens arrived on the scene use us a clearer picture of the world in which complex plants evolved.

By understanding what the Earth was like hundreds of millions of years ago, we can examine how it's changed and gain more insight into the current state of our planet. For the researchers, it's similar to the feeling you might get when learning about your family history from an ancestry DNA kit.

"It reshapes our understanding of the early evolution of complex ecosystems on Earth," says Nelsen.
-end-


Field Museum

Related Algae Articles:

Algae team rosters could help ID 'super corals'
U.S. and Australian researchers have found a potential tool for identifying stress-tolerant ''super corals.'' In experiments that simulated climate change stress, researchers found corals that best survived had symbiotic algae communities with similar features.
Algae shown to improve gastrointestinal health
A green, single-celled organism called Chlamydomonas reinhardtii has served as a model species for topics spanning algae-based biofuels to plant evolution.
How do corals make the most of their symbiotic algae?
Corals depend on their symbiotic relationships with the algae that they host.
Algae and bacteria team up to increase hydrogen production
A University of Cordoba research group combined algae and bacteria in order to produce biohydrogen, fuel of the future
Algae as a resource: Chemical tricks from the sea
The chemical process by which bacteria break down algae into an energy source for the marine food chain, has been unknown - until now.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Algae could prevent limb amputation
A new algae-based treatment could reduce the need for amputation in people with critical limb ischemia, according to new research funded by the British Heart Foundation, published today in the journal npj Regenerative Medicine.
Turning algae into fuel
A team of University of Utah chemical engineers have developed a new kind of jet mixer for creating biomass from algae that extracts the lipids from the watery plants with much less energy than the older extraction method.
The algae's third eye
Scientists at the Universities of Würzburg and Bielefeld in Germany have discovered an unusual new light sensor in green algae.
How some algae may survive climate change
Green algae that evolved to tolerate hostile and fluctuating conditions in salt marshes and inland salt flats are expected to survive climate change, thanks to hardy genes they stole from bacteria, according to a Rutgers-led study.
More Algae News and Algae Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.