Nav: Home

The global distribution of freshwater plants is controlled by catchment characteristics

November 15, 2019

Globally, photosynthetic modes of terrestrial plants are influenced by climatic factors such as adaptations to variation in air temperature and water availability. In water, CO2 often limits photosynthesis because it moves 10,000-times slower than in air and, thus, rapid photosynthesis can deplete CO2 in dense plant stands. In order to meet the requirements of water plants, CO2 concentrations must be 10-20 times higher than in air. This never happens in lakes, where microscopic algae may reduce the CO2 content to 10% of that in air.

The solution among many water plants is to use bicarbonate, which is dissolved in high concentrations in lakes located in calcareous catchments.

' "Use of bicarbonate is energy demanding and much less efficient than CO2 use, when concentrations are the same", explains Professor Ole Pedersen. "However, in bicarbonate-rich lakes, the photosynthesis yield is much higher when water plants can use bicarbonate. Globally, this can account for the increasing abundance of bicarbonate users relative to non-users in lakes located in calcareous catchments."

- "In order to establish the ability, or lack of ability to use bicarbonate of many species, we first had to diagnose several tropical species and then establish their abundance in relation to water chemistry", explains Professor Kaj Sand-Jensen.

The increase in abundance of bicarbonate users with higher bicarbonate concentrations was consistent among temperate and tropical lakes. In streams, however, where CO2 concentrations are high because of continuous inflow of CO2-rich soil water, CO2 use is the most cost-effective and the abundance of bicarbonate users is low and remains independent of bicarbonate concentrations.

The implications of the study are, that species richness and composition of water plants are expected to change with ongoing and future changes of bicarbonate concentrations in lakes that are caused by anthropogenic changes of acidification, forest cover and use of nitrogen fertilizers. The changes can be dramatic, since CO2 users are generally small individuals compared to the much larger bicarbonate users. Therefore, a change in the balance between the two plant types alters the three-dimensional structure of the underwater meadows and the protection of small animals and juvenile fish against predation.
-end-
The work was done in collaboration with the former post.docs. Lars Lønsmann Iversen, Anders Winkel and Lars Båstrup-Spohr.

Faculty of Science - University of Copenhagen

Related Water Articles:

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.
What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.
How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.
Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
The age of water
Groundwater in Egypt's aquifers may be as much as 200,000 years old and that's important to know as officials in that country seek to increasing the use of groundwater, especially in the Eastern Desert, to mitigate growing water stress and allow for agricultural projects.
More Water News and Water Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.