The global distribution of freshwater plants is controlled by catchment characteristics

November 15, 2019

Globally, photosynthetic modes of terrestrial plants are influenced by climatic factors such as adaptations to variation in air temperature and water availability. In water, CO2 often limits photosynthesis because it moves 10,000-times slower than in air and, thus, rapid photosynthesis can deplete CO2 in dense plant stands. In order to meet the requirements of water plants, CO2 concentrations must be 10-20 times higher than in air. This never happens in lakes, where microscopic algae may reduce the CO2 content to 10% of that in air.

The solution among many water plants is to use bicarbonate, which is dissolved in high concentrations in lakes located in calcareous catchments.

' "Use of bicarbonate is energy demanding and much less efficient than CO2 use, when concentrations are the same", explains Professor Ole Pedersen. "However, in bicarbonate-rich lakes, the photosynthesis yield is much higher when water plants can use bicarbonate. Globally, this can account for the increasing abundance of bicarbonate users relative to non-users in lakes located in calcareous catchments."

- "In order to establish the ability, or lack of ability to use bicarbonate of many species, we first had to diagnose several tropical species and then establish their abundance in relation to water chemistry", explains Professor Kaj Sand-Jensen.

The increase in abundance of bicarbonate users with higher bicarbonate concentrations was consistent among temperate and tropical lakes. In streams, however, where CO2 concentrations are high because of continuous inflow of CO2-rich soil water, CO2 use is the most cost-effective and the abundance of bicarbonate users is low and remains independent of bicarbonate concentrations.

The implications of the study are, that species richness and composition of water plants are expected to change with ongoing and future changes of bicarbonate concentrations in lakes that are caused by anthropogenic changes of acidification, forest cover and use of nitrogen fertilizers. The changes can be dramatic, since CO2 users are generally small individuals compared to the much larger bicarbonate users. Therefore, a change in the balance between the two plant types alters the three-dimensional structure of the underwater meadows and the protection of small animals and juvenile fish against predation.
-end-
The work was done in collaboration with the former post.docs. Lars Lønsmann Iversen, Anders Winkel and Lars Båstrup-Spohr.

Faculty of Science - University of Copenhagen

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.