How nematodes outsmart the defenses of pests

November 15, 2019

The western corn rootworm causes economic losses of over 2 billion US dollars in maize cultivation and is thus a serious agricultural pest. Originally from America, the western corn rootworm is currently invading Europe, including Switzerland.

A successful pest

In an earlier study, Christelle Robert and Matthias Erb from the Institute of plant sciences (IPS) at the University of Bern elucidated one of the strategies that underlies the success of the western corn rootworm. Maize plants store certain defense substances, so-called benzoxazinoids, in their roots. These substances are harmful to many pests. However, the western corn rootworm has developed a strategy to detoxify these substances. The larvae of the corn rootworm thus become resistant against the plant's own defense. Even worse - the larvae store the benzoxazinoids in their bodies and in turn, use them for self-defense against their own enemies, including parasitic roundworms (entomopathogenic nematodes). The fact that the western corn rootworm has found a defense strategy against nematodes is of particular importance, as the nematodes are used as biological control agents against this pest.

"Considerable successes have already been achieved in the field using nematodes; efficiency-increasing measures could further boost this approach", explains Matthias Erb, Professor for Biotic Interactions at the IPS. "Against this background, we asked ourselves the question: If pests such as the western corn rootworm can become immune against plant defense substances, could beneficial organisms such as entomopathogenic nematodes do the same?"

Breeding beneficial organisms for pest control

The researchers compared nematodes from areas in which the western corn rootworm is present with nematodes from areas where it is absent. "We found that nematodes from infested areas are resistant against benzoxazinoids, unlike nematodes from other areas", says Xi Zhang, who worked on the project as a PhD student. In the lab, the researchers were able to observe that nematodes which were exposed to the the western corn rootworm became resistant to plant defense substances within just a few generations. "The speed of this adaptation surprised us", says Zhang.

The results of the study, which was published in the journal PNAS, are particularly relevant for biological pest control. "Beneficial insects like nematodes, which are resistant against plant defense substances, can keep the insect pests that accumulate these substances from the plant at bay", explains study co-author Ricardo Machado. This trait can be acquired very quickly through targeted selection and is thus a promising breeding target. "We expect that many other beneficial organisms could be improved by focusing on their capacity to resist plant defense compounds", says Machado.

In the next stage, researchers are targeting the symbiotic bacteria of the nematodes to make them resistant against benzoxazinoids, and to test the improved biological control agents in the field. "This is a next step to bring our research closer to agricultural application", says Machado.

Plant defense compounds shape food chains

In the research project, funded by the Swiss National Science Foundation (SNSF), the researchers relied on a combined approach of behavioral ecology, analytical chemistry and plant genetics. The findings illustrate the importance of plant defense compounds such as benzoxazinoids for the evolution and dynamics of food chains. "The arms race between plants and herbivores is often viewed as a motor of the chemical and biological diversity of these two groups", says study co-author Christelle Robert. "Our study indicates that plant defense compounds may influence the evolution of entire food chains."

As part of the interfaculty research cooperation "One Health" at the University of Bern (see box), the researchers have recently started to investigate how benzoxazinoids affect the health of animals and humans. "The integration of our findings into the central agricultural food chain is a fascinating expansion of our work with a lot of potential", says Matthias Erb.

University of Bern

Related Nematodes Articles from Brightsurf:

Oil-eating worms provide valuable assistance in soil remediation
Bionanotechnology Lab of Kazan Federal University works on adapting nematodes to consuming oil waste.

Fungal species naturally suppresses cyst nematodes responsible for major sugar beet losses
In the current study, the authors showed that similar fungi inhabited sugar beet fields in California, suggesting that a group of naturally occurring fungi, given the right conditions, might be able to dramatically reduce nematode populations in one season.

The balancing act between plant growth and defense
Kumamoto University researchers have pinpointed the mechanism that regulates the balance between plant growth and defense.

Fungus application thwarts major soybean pest, study finds
The soybean cyst nematode sucks the nutrients out of soybean roots, causing more than $1 billion in soybean yield losses in the U.S. each year.

WSU genetic discovery holds implications for better immunity, longer life
Wrinkles on the skin of a microscopic worm might provide the key to a longer, healthier life for humans.

How nematodes outsmart the defenses of pests
The western corn rootworm, one of the world's most damaging maize pests, can use plant defense compounds to defend itself against its own natural enemies, so-called entomopathogenic nematodes.

Research suggests fumigants have very low long-term impact on soil health
It started with curiosity. How does a fumigant, commonly used for nematode management in potato cropping systems, influence soil microbial communities?

New survey confirms muscadine grapes are affected by parasitic nematodes
Muscadines are also known for being hearty grapes, with a tough skin that protects them from many fungal diseases.

Otherworldly worms with three sexes discovered in Mono Lake
The extreme environment of Mono Lake was thought to only house two species of animals -- until now.

New information on regulation of sense of smell with the help of nematodes
PIM kinases are enzymes that are evolutionarily well conserved in both humans and nematodes.

Read More: Nematodes News and Nematodes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to