Army-funded effort examines androgen's role in bone loss

November 16, 2004

PORTLAND, Ore. - An extensive, Oregon Health & Science University-led research effort examining the role of the male sex hormone androgen in bone formation has piqued the interest of the United States military.

The U.S. Army Medical Research and Materiel Command, looking to reduce stress fractures and preserve bone health among its young recruits, is funding a four-year, $1.72 million project through the Department of Defense Peer Reviewed Medical Research Program that scientists hope will lead to a better understanding of the molecular and cellular events by which androgen influences the skeleton.

"It turns out that one of the most common injuries sustained in basic training in both men and women is stress fracture in long bones. In this population, there's also anabolic steroid abuse," said the study's lead investigator, Kristine Wiren, Ph.D., associate professor of medicine (endocrinology, diabetes and clinical nutrition) and behavioral neuroscience, OHSU School of Medicine, and research biologist, Portland Veterans Affairs Medical Center.

"The goal of the Army in funding this grant is to identify factors that promote a healthy skeleton, that influence stress fractures, and to treat and prevent bone-weakening osteoporosis in the aging population."

Of the 1.3 million bone fractures attributed to osteoporosis each year, 150,000 are hip fractures that occur in men with a 15 percent lifetime risk for the development of fracture. Hip fractures tend to occur over the age of 70; nearly a fourth of the patients who suffer a hip fracture die within the first year; half of patients are unable to walk without assistance; and a third are totally dependent.

Osteoporosis is characterized by a relative decrease in bone formation, mediated by osteoblast cells, versus bone resorption, mediated by osteoclast cells. Androgen - testosterone is best-known type - and estrogen both contribute to adult bone mass maintenance: Androgen is an anabolic agent that stimulates bone formation, and estrogen is thought to have a protective effect on bone by inhibiting resorption.

"In osteoporosis, you have more resorption than formation," Wiren said.

Aging, glucocorticoid therapy for asthma, alcoholism, chronic smoking and bone marrow malignancies are believed to cause androgen deficiency. All - in addition to reduced hormone secretion from the testes, a condition called hypogonadism - are associated with osteoporosis development in men.

The disease also is a side effect of androgen deprivation therapy, a common treatment for prostate cancer that wipes out most male hormones found in the body.

"Women and estrogen have been targets for a lot of osteoporosis research because estrogen is effective at stopping bone loss," Wiren said. "We understand a lot more about estrogen than we do androgen. But both genders have androgen and both genders have estrogen and both are at risk for the development of osteoporosis. It's also clear in intervention studies that you can effectively treat osteoporotic women with androgen."

One option being studied for treating osteoporosis in men and women is androgen therapy, either through androgen replacement using hormone drugs, or androgen replacement combined with estrogen replacement.

"You get a better response with combined treatment than with either steroid alone, which suggests they're doing different things," Wiren said.

Selective androgen receptor modulators, or SARMs, are among a class of drugs that also are being studied as an alternative to androgen therapy. Like selective estrogen receptor modulators, SARMs activate the hormone's signaling pathway, but only in a tissue-specific manner. By targeting androgen receptors in bone, SARMs are thought to curb potential risks for prostate cancer progression and other side effects that can result from androgen replacement.

The Army grant, which began in November, comes on the heels of a study Wiren published in July in the journal Endocrinology. In it, she describes her research team's development of a transgenic mouse group with overexpressed androgen receptors in bone-forming osteoblast cells.

"There's a whole superfamily of receptors for steroid hormones; steroids require a receptor for biologic actions," Wiren said. "By overexpressing the receptor, we get a more sensitive response to androgen."

Using collagen DNA cloned from rats as a promoter, Wiren was able to drive overexpression of the androgen receptor DNA in the skeleton and at a high level. "When we characterized how much of the receptor was present, it was four-fold higher. It's higher than what you usually have in bone, but at a level you'd find in the prostate or other androgen target tissues," she said.

The result was a mouse group with enhanced androgen responsiveness in bone, particularly among males. Their skulls were thicker, they had increased formation on the outside of long bones, such as the femur, decreased formation on the marrow surface inside the bone, reduced bone loss and low bone "turnover." Biomechanical analysis showed that the bones were not stronger, however, with reduced load capability and different material properties.

The study also demonstrated that androgen receptors are important to the development of the sexually distinct skeletons of men and women.

"There are receptors everywhere, but these mice demonstrate proof of concept that the androgen receptor in bone is responsible for sexually dimorphic skeletons. In other words, that male bones are wider than female," she said. "This is an important model to look at the influence of gender on bone development and skeletal maintenance."
-end-
To access all OHSU news releases, visit www.ohsu.edu/news/.

Oregon Health & Science University

Related Prostate Cancer Articles from Brightsurf:

Low risk of cancer spread on active surveillance for early prostate cancer
Men undergoing active surveillance for prostate cancer have very low rates - one percent or less - of cancer spread (metastases) or death from prostate cancer, according to a recent study published in the Journal of Urology®, an Official Journal of the American Urological Association (AUA).

ESMO 2020: Breast cancer drug set to transform prostate cancer treatment
A drug used to treat breast and ovarian cancer can extend the lives of some men with prostate cancer and should become a new standard treatment for the disease, concludes a major trial which is set to change clinical practice.

Major trial shows breast cancer drug can hit prostate cancer Achilles heel
A drug already licensed for the treatment of breast and ovarian cancers is more effective than targeted hormone therapy at keeping cancer in check in some men with advanced prostate cancer, a major clinical trial reports.

The Lancet: Prostate cancer study finds molecular imaging could transform management of patients with aggressive cancer
Results from a randomised controlled trial involving 300 prostate cancer patients find that a molecular imaging technique is more accurate than conventional medical imaging and recommends the scans be introduced into routine clinical practice.

Common genetic defect in prostate cancer inspires path to new anti-cancer drugs
Researchers found that, in prostate cancer, a mutation leading to the loss of one allele of a tumor suppressor gene known as PPP2R2A is enough to worsen a tumor caused by other mutations.

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.

Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.

CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.

Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.

Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.

Read More: Prostate Cancer News and Prostate Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.