Growth spurt in tree rings prompts questions about climate change

November 16, 2009

The researchers studied bristlecone pines (Pinus longaeva) at three sites in California and Nevada, close to the upper elevation limit of tree growth. The tree-ring record showed wider rings in recent decades, indicating a surge in growth in the second half of the 20th century that was greater than at any time in the last 3,700 years.

"We've got a pretty strong pointer that temperature plays a part in this," said Malcolm Hughes in describing the work. "So the puzzle is, why does it play a part in it for the trees near the treeline and not for those only 300, 400 feet lower down the mountain than them?"

To solve that puzzle, the research team took core samples, drawing from living and dead trees, which were well preserved in the cold, dry climate existing at the high elevation. They were able to chart ring width going back 4,600 years.

"We're able to overlap the patterns from the dead wood with the inner part of the living trees, and that way move back in time, dating the samples as we go," said Salzer.

They determined that fertilization from increased carbon dioxide in the atmosphere does not adequately explain this kind of growth at the upper-forest level. What they found was that the bristlecone pines at treeline grow faster when temperatures are warmer--in contrast to the trees lower down the mountain, which grow faster with higher amounts of precipitation and when temperatures are cooler. In other words, it's the chilly mountaintop climate that has been limiting growth for these particular trees.

So, the researchers say, that strongly points to warmer temperatures as a cause of the recent surge in growth for bristlecone pines. This finding has implications that reach beyond the state of the trees.

"What it means for the mountains, and the mountain environment, is probably treeline will be moving up, and there are some indications of that occurring," said Salzer. "Other animal and plant species will have to shift up to accommodate the changing conditions."

There is the potential for impact on humans as well.

"High mountains are our water towers. That's where we store water as snow through the winter," said Hughes. "And if we reduce the fraction of year for which that water is there as snow rather than running straight down as rain or evaporating, then this has pretty serious consequences for our future water supplies."
This work was supported by the National Science Foundation through its paleoclimatology program.

National Science Foundation

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to