Nav: Home

Gene therapy: A promising candidate for cystic fibrosis treatment

November 16, 2015

An improved gene therapy treatment can cure mice with cystic fibrosis (CF). Cell cultures from CF patients, too, respond well to the treatment. Those are the encouraging results of a study presented by the Laboratory for Molecular Virology and Gene Therapy at KU Leuven, Belgium.

Cystic fibrosis or mucoviscidosis is a genetic disorder that makes the mucus in the body thick and sticky, which in turn causes clogging in, for instance, the airways and the gastrointestinal tract. The symptoms can be treated, but there is no cure for the disorder.

Cystic fibrosis is caused by mutations in the CFTR gene. This gene contains the production code for a protein that functions as a channel through which chloride ions and water flow out of cells. In the cells of CF patients, these chloride channels are dysfunctional or even absent, so that thick mucus starts building up.

"A few years ago, a new drug was launched that can repair dysfunctional chloride channels", Professor Zeger Debyser explains. "Unfortunately, this medicine only works in a minority of CF patients. As for the impact of gene therapy, previous studies suggested that the treatment is safe, but largely ineffective for cystic fibrosis patients. However, as gene therapy has recently proven successful for disorders such as haemophilia and congenital blindness, we wanted to re-examine its potential for cystic fibrosis".

That is why lead authors Dragana Vidovi and Marianne Carlon examined an improved gene therapy treatment based on inserting the genetic material for chloride channels -- coded by the CFTR gene -- into the genome of a recombinant AAV viral vector , which is derived from the relatively innocent AAV virus. The researchers then used this vector to 'smuggle' a healthy copy of the CFTR gene into the affected cells.

Both in mice with cystic fibrosis and in gut cell cultures from CF patients, this approach yielded positive results. "We administered the rAAV to the mice via their airways. Most of the CF mice recovered. In the patient-derived cell cultures, chloride and fluid transport were restored".

There is still a long way to go before gene therapy can be used to treat cystic fibrosis patients, Debyser clarifies: "We must not give CF patients false hope. Developing a treatment based on gene therapy will take years of work. For one thing, our study did not involve actual human beings, only mice and patient-derived cell cultures. Furthermore, we still have to examine how long the therapy works. Repeated doses might be necessary. But gene therapy clearly is a promising candidate for further research towards a cure for cystic fibrosis".

This research was conducted in collaboration with the University Hospitals Leuven and the universities of Paris, Utrecht, and Rotterdam.
-end-


KU Leuven

Related Gene Therapy Articles:

Mysterious gene transcripts after cancer therapy
Drugs that are used in cancer therapy to erase epigenetic alterations in cancer cells simultaneously promote the production of countless mysterious gene transcripts, scientists from the German Cancer Research Center now report in Nature Genetics.
Gene therapy could 'turn off' severe allergies
A single treatment giving life-long protection from severe allergies such as asthma could be made possible by immunology research at The University of Queensland.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
New gene therapy for pseudarthrosis trialed at Kazan University
A team headed by Professor Albert Rizvanov, director of the Gene and Cell Technologies Open Lab, created a gene therapy drug that encodes growth factors for the stimulation of blood vessel and bone formation.
WSU researcher develops safer gene therapy
A Washington State University researcher has developed a way to reduce the development of cancer cells that are an infrequent but dangerous byproduct of gene therapy.
New gene therapy prevents muscle wasting associated with cancer
A new gene therapy could be used to prevent the loss of muscle mass and physical strength associated with advanced cancer
On the path to controlled gene therapy
The ability to switch disease-causing genes on and off remains a dream for many physicians, research scientists and patients.
Gene therapy against brain cancer
A team from the International School for Advanced Studies (SISSA) in Trieste has obtained very promising results by applying gene therapy to glioblastoma.
First gene therapy successful against human aging
Elizabeth Parrish, CEO of Bioviva USA Inc. has become the first human being to be successfully rejuvenated by gene therapy, after her own company's experimental therapies reversed 20 years of normal telomere shortening.
Designing gene therapy
Scientists in the Barabas group at EMBL have increased the efficiency of a genome-engineering tool called Sleeping Beauty, which is showing promise in clinical trials for leukemia and lymphoma immunotherapies.

Related Gene Therapy Reading:

The Gene Therapy Plan: Taking Control of Your Genetic Destiny with Diet and Lifestyle
by Mitchell L. Gaynor MD (Author), Mehmet C. Oz M.D. (Foreword)

Your genes are not your destiny: learn to prevent disease, improve brain function, and reverse the course of obesity and premature aging through easy-to-adopt nutrition and lifestyle changes that target your DNA
 
While we cannot alter the genes we are born with, we can prevent and reverse disease with foods, supplements, and lifestyle choices that turn good genes on and bad genes off. In his pathbreaking plan, Dr. Mitchell Gaynor—a renowned oncologist and pioneer in integrative medicine—focuses on obesity, heart disease, diabetes, cancer, and aging to explain... View Details


The Forever Fix: Gene Therapy and the Boy Who Saved It
by Ricki Lewis (Author)

Fascinating narrative science that explores the next frontier in medicine and genetics through the very personal prism of the children and families gene therapy has touched.

Eight-year-old Corey Haas was nearly blind from a hereditary disorder when his sight was restored through a delicate procedure that made medical history. Like something from a science fiction novel, doctors carefully introduced viruses bearing healing genes into Corey's eyes―a few days later, Corey could see, his sight restored by gene therapy.
THE FOREVER FIX is the first book to tell the fascinating story... View Details


The Gene: An Intimate History
by Siddhartha Mukherjee (Author)

THE #1 NEW YORK TIMES BESTSELLER
A New York Times Notable Book
A Washington Post and Seattle Times Best Book of the Year


From the Pulitzer Prize-winning author of The Emperor of All Maladies—a fascinating history of the gene and “a magisterial account of how human minds have laboriously, ingeniously picked apart what makes us tick” (Elle).

“Dr. Siddhartha Mukherjee dazzled readers with his Pulitzer Prize-winning The Emperor of All Maladies in 2010. That achievement was evidently just a warm-up for... View Details


Gene Therapy, An Issue of Hematology/Oncology Clinics of North America, 1e (The Clinics: Internal Medicine)
by Daniel E. Bauer MD PhD (Author), Donald B Kohn MD (Author)

This issue of Hematology/Oncology Clinics will focus on Gene Therapy. Topics include, but are not limited to Historical Perspective and Current Renaissance, Integrating Vectors, Nonintegrating Vectors, Gene Editing, Conditioning Therapies for Autologous HSCT, Approaches to Immunodeficiency, Approaches to Hemoglobinopathy, Approaches to Hemophilia, Hematopoietic Gene Therapies for Neurologic and Metabolic Disease, Gene Therapy Approaches to HIV and other Infectious Diseases, HSC Approaches to Cancer, and Gene Modified T Cell Therapies for Cancer. View Details


Gene and Cell Therapy: Therapeutic Mechanisms and Strategies, Fourth Edition
by Nancy Smyth Templeton (Editor)

The Most Comprehensive, State-of-the-Art Book on Using Gene and Cell Therapy in Clinical Medicine

Gene and Cell Therapy: Therapeutic Mechanisms and Strategies, Fourth Edition presents extensive background and basic information, state-of-the-art technologies, important achievements, and lingering challenges in the fields of gene and cell therapies. The fourth edition of this bestseller continues to provide the most comprehensive coverage of these fields in one volume. Some chapters have expanded introductions, making the book even more suitable for classroom... View Details


Gene Therapy: Treating Disease by Repairing Genes (New Biology)
by Joseph, Ph.D. Panno (Author)

Discusses how gene therapy works, what diseases may be treated by it, what the moral and ethical issues are, and provides case studies of Ashi DeSilva and Jesse Gelsinger. View Details


Advanced Textbook on Gene Transfer, Gene Therapy and Genetic Pharmacology: Principles, Delivery and Pharmacological and Biomedical Applications of ... (Icp Textbooks in Biomolecular Sciences)
by Daniel Scherman (Author), Daniel Scherman (Editor)

This unique advanced textbook provides a clear and comprehensive description of the field of gene delivery, gene therapy and genetic pharmacology, with descriptions of the main gene transfer vectors and a set of selected therapeutic applications, along with safety considerations.

The use of gene transfer is exponential in the scientific and medical community, both for cell biology experiments and for gene therapy revolutionary strategies. The advanced textbook should thus be of invaluable utility to Master, PhD or MD students, post-doctoral scientists or medical doctors, and to any... View Details


Adenoviral Vectors for Gene Therapy, Second Edition
by David T. Curiel (Editor)

Adenoviral Vectors for Gene Therapy, Second Edition provides detailed, comprehensive coverage of the gene delivery vehicles that are based on the adenovirus that is emerging as an important tool in gene therapy. These exciting new therapeutic agents have great potential for the treatment of disease, making gene therapy a fast-growing field for research.

This book presents topics ranging from the basic biology of adenoviruses, through the construction and purification of adenoviral vectors, cutting-edge vectorology, and the use of adenoviral vectors in preclinical animal... View Details


A Crack in Creation: Gene Editing and the Unthinkable Power to Control Evolution
by Jennifer A. Doudna (Author), Samuel H. Sternberg (Author)

A trailblazing biologist grapples with her role in the biggest scientific discovery of our era: a cheap, easy way of rewriting genetic code, with nearly limitless promise and peril.

Not since the atomic bomb has a technology so alarmed its inventors that they warned the world about its use. Not, that is, until the spring of 2015, when biologist Jennifer Doudna called for a worldwide moratorium on the use of the new gene-editing tool CRISPR—a revolutionary new technology that she helped create—to make heritable changes in human embryos. The cheapest,... View Details


Gene Therapy
by Mauro Giacca (Author)

I entered the gene therapy field in the mid-1990s, being fascinated by the immense potential of genes as drugs for the treatment of human disease. Since then, I have experienced the ups and downs of this discipline, and tried to contribute with my work and that of my laboratory to the development of innovative approaches to the treatment of cardiovascular disorders. During these years, I have had several opp- tunities to speak on gene therapy at lectures and academic lessons, and have often noticed that the field is very attractive to scientists of all disciplines. However, as yet no... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Big Five
What are the five biggest global challenges we face right now — and what can we do about them? This hour, TED speakers explore some radical solutions to these enduring problems. Guests include geoengineer Tim Kruger, president of the International Rescue Committee David Miliband, political scientist Ian Bremmer, global data analyst Sarah Menker, and historian Rutger Bregman.
Now Playing: Science for the People

#456 Inside a Conservation NGO
This week we take a close look at conservation NGOS: what they do, how they work, and - most importantly - why we need them. We'll be speaking with Shyla Raghav, the Climate Change Lead at Conservation International, about using strategy and policy to tackle climate change. Then we'll speak with Rebecca Shaw, Lead Scientist at the World Wildlife Fund, about how and why you should get involved with conservation initiatives.