Nav: Home

SF State research reveals how climate influences sediment size

November 16, 2015

SAN FRANCISCO, Nov. 16, 2015 -- In a new paper published this week in the Proceedings of the National Academy of Sciences (PNAS), San Francisco State University Professor of Earth and Climate Sciences Leonard Sklar and colleagues show how two established geochemical techniques can be combined in a novel way to reveal both the altitude where river rocks were originally produced and the rate of erosion that led them to crumble into the river.

Geologists have long dreamed of interviewing the rocks on the bed of a river to learn the story of where they were born and how they came to be the size they are. This is because the size of river rocks influences how rivers behave, from the habitat they provide to the speed with which they carve canyons. Yet, until now, the rocks have withheld their secrets.

Sklar, along with lead author Cliff Riebe and doctoral student Claire Lukens from the University of Wyoming and David Shuster from the University of California, Berkeley, wanted to understand how climate, which varies with altitude, controls the size and flux of sediments in rivers.

The National Science Foundation-funded research team's key breakthrough came when it used two techniques to query river rocks. First, researchers used cosmogenic nuclides to trace erosion rates in sediment samples. This common method of measuring erosion rates uses rare isotopes formed in minerals exposed to cosmic rays at the earth's surface. A higher concentration of isotopes means the rock has spent a longer time exposed at the surface, indicating a slower erosion rate.

They then combined this technique with detrital thermochronometry, another sediment tracing tool, which pinpoints where on a mountain sediment was produced. This is done by laboriously isolating tiny crystals of the mineral apatite and using ultraprecise machines to count the number of helium atoms contained in the crystals. The helium is formed by radioactive decay of uranium and is more abundant in rocks at higher elevations in the study area.

The findings are significant for two reasons, Sklar said. The results show that the size of sediment that falls into rivers is larger where mountain slopes are steeper, colder and less vegetated, revealing how climate and topography influence the size of sediments in rivers. Sediment size, in turn, controls how fast rivers cut canyons into rock, which ultimately limits how high mountains can rise.

"With this new way of interrogating river rocks," Sklar continued, "we can close the circle between how hillslopes feed rocks to the river and how the river carves the landscape and creates the hillslopes in the first place."

This article titled "Climate and topography control the size and flux of sediment produced on steep mountain slopes" was published online Nov. 16. The research was conducted in California's High Sierra Mountains, which tower above Inyo Creek, a small watershed adjacent to Mt. Whitney, the highest peak in the contiguous United States.
San Francisco State University makes things happen. Founded in 1899, it is the only master's-level public university serving the counties of San Francisco, San Mateo and Marin. Its nationally acclaimed programs span a broad range of disciplines. Nearly 30,000 students enroll at the University each year, and its more than 236,000 graduates have contributed to the economic, cultural and civic fabric of San Francisco and beyond. Through them -- and more than 1,600 world-class faculty members -- SF State proudly embraces its legacy of academic excellence, community engagement and commitment to social justice. For more information, visit

San Francisco State University

Related Climate Articles:

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
How trees could save the climate
Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions.
Climate undermined by lobbying
For all the evidence that the benefits of reducing greenhouse gases outweigh the costs of regulation, disturbingly few domestic climate change policies have been enacted around the world so far.
Climate education for kids increases climate concerns for parents
A new study from North Carolina State University finds that educating children about climate change increases their parents' concerns about climate change.
Inclusion of a crop model in a climate model to promote climate modeling
A new crop-climate model provides a good tool to investigate the relationship between crop development and climate change for global change studies.
Natural climate solutions are not enough
To stabilize the Earth's climate for people and ecosystems, it is imperative to ramp up natural climate solutions and, at the same time, accelerate mitigation efforts across the energy and industrial sectors, according to a new policy perspective published today in Science.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate News and Climate Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at