Researchers discover sediment size matters in high-elevation erosion rates

November 16, 2015

When it comes to sediment in the High Sierra, size does matter, according to two University of Wyoming researchers.

For the past four summers, Cliff Riebe, a UW associate professor in the Department of Geology and Geophysics, and Claire Lukens, a UW doctoral student majoring in geology, have studied sediment in Inyo Creek, in the High Sierra in California.

The two found that cold, steep, high-elevation slopes with less vegetation produce coarser and larger sediment than low-elevation, gentle slopes. This finding quantifies how sediment production varies with topography and suggests that variations in climate, topography and weathering rates may shape the evolution of mountain landscapes by influencing sediment size.

Riebe is lead author of a paper, titled "Climate and Topography Control the Size and Flux of Sediment Produced on Steep Mountain Slopes," published online Nov. 16 in the Proceedings of the National Academy of Sciences (PNAS). Lukens, from Seattle, is co-author. The journal is one of the world's most prestigious multidisciplinary scientific serials, with coverage spanning the biological, physical and social sciences.

Both the size and flux of sediment from slopes can influence channel incision, making sediment production and erosion central to the interplay of climate and tectonics in landscape evolution, Riebe says.

"Rivers need tools to cut into their beds," Riebe says. "Water alone can't do the job. And the bigger the sediment is, the easier it is for the river to carve into the landscape. So, when it comes to sediment, it turns out that size really does matter."

"Sediment can be as large as boulders at higher elevations and as fine as sand at lower elevations on the landscape," Lukens adds. "We know this is true from our analyses of sediment in the stream. In effect, we are using geochemistry to interrogate stream sediment about where it comes from and how fast it is eroding."

Erosion rates commonly are measured using cosmogenic nuclides, which serve as tracers of erosion because they accumulate in minerals in the uppermost few meters of rock and soil during the exhumation to the landscape surface. For example, the isotope beryllium 10 is produced from oxygen by nuclear reactions in quartz as the mineral rises to the surface.

Riebe and Lukens combined this technique with another sediment-tracing tool called detrital thermochronometry, which identifies the elevations of hill slopes where sediment was produced by weathering of underlying bedrock. The two used computer simulations to determine the statistical significance of their findings.

"This is the first time these tools have been combined in this way," Lukens says.

For a long time, geologists have been able to quantify how fast sediment is eroding from landscapes. Until this UW research, there has been no complementary method to quantify how the size distribution of sediment particles varies across slopes where the sediment is produced from bedrock by weathering and erosion.

Leonard Sklar, a professor of earth and climate sciences at San Francisco State University, and David Shuster, an associate professor of earth and planetary science at the University of California-Berkeley, were other co-authors of the paper.
-end-


University of Wyoming

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.