Nav: Home

Researchers discover sediment size matters in high-elevation erosion rates

November 16, 2015

When it comes to sediment in the High Sierra, size does matter, according to two University of Wyoming researchers.

For the past four summers, Cliff Riebe, a UW associate professor in the Department of Geology and Geophysics, and Claire Lukens, a UW doctoral student majoring in geology, have studied sediment in Inyo Creek, in the High Sierra in California.

The two found that cold, steep, high-elevation slopes with less vegetation produce coarser and larger sediment than low-elevation, gentle slopes. This finding quantifies how sediment production varies with topography and suggests that variations in climate, topography and weathering rates may shape the evolution of mountain landscapes by influencing sediment size.

Riebe is lead author of a paper, titled "Climate and Topography Control the Size and Flux of Sediment Produced on Steep Mountain Slopes," published online Nov. 16 in the Proceedings of the National Academy of Sciences (PNAS). Lukens, from Seattle, is co-author. The journal is one of the world's most prestigious multidisciplinary scientific serials, with coverage spanning the biological, physical and social sciences.

Both the size and flux of sediment from slopes can influence channel incision, making sediment production and erosion central to the interplay of climate and tectonics in landscape evolution, Riebe says.

"Rivers need tools to cut into their beds," Riebe says. "Water alone can't do the job. And the bigger the sediment is, the easier it is for the river to carve into the landscape. So, when it comes to sediment, it turns out that size really does matter."

"Sediment can be as large as boulders at higher elevations and as fine as sand at lower elevations on the landscape," Lukens adds. "We know this is true from our analyses of sediment in the stream. In effect, we are using geochemistry to interrogate stream sediment about where it comes from and how fast it is eroding."

Erosion rates commonly are measured using cosmogenic nuclides, which serve as tracers of erosion because they accumulate in minerals in the uppermost few meters of rock and soil during the exhumation to the landscape surface. For example, the isotope beryllium 10 is produced from oxygen by nuclear reactions in quartz as the mineral rises to the surface.

Riebe and Lukens combined this technique with another sediment-tracing tool called detrital thermochronometry, which identifies the elevations of hill slopes where sediment was produced by weathering of underlying bedrock. The two used computer simulations to determine the statistical significance of their findings.

"This is the first time these tools have been combined in this way," Lukens says.

For a long time, geologists have been able to quantify how fast sediment is eroding from landscapes. Until this UW research, there has been no complementary method to quantify how the size distribution of sediment particles varies across slopes where the sediment is produced from bedrock by weathering and erosion.

Leonard Sklar, a professor of earth and climate sciences at San Francisco State University, and David Shuster, an associate professor of earth and planetary science at the University of California-Berkeley, were other co-authors of the paper.
-end-


University of Wyoming

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...