Bacteriophages cure bacterial infections

November 16, 2016

"The first targets in the clinical trials of phage therapy could be, for example, wound infections or the eradication of antibiotic-resistant Escherichia coli bacteria from the intestine. Also acne could be considered as a target," says Mikael Skurnik, from the University of Helsinki.

Bacteriophages (phages) are viruses that kill bacteria. The most common organisms on the planet, they control the number of bacteria and maintain ecological balances in nature. Each bacteriophage infects only a few bacterial species or types, potentially making them real precision-guided 'smart weapons' in the battle against bacterial infections.

"Unlike antibiotics, phages do not disturb the normal microbiota. And importantly, they can be used against antibiotic-resistant bacteria," Skurnik adds.

The first double-blind controlled clinical trials with phage therapy have recently been carried out in the United States, the United Kingdom and Belgium. The trials have concentrated mainly on establishing the safety of the therapy. No adverse effects have been observed in these trials. The EU has also funded the PhagoBurn project where the efficacy of phage therapy using phage cocktails to treat burn wounds is being investigated.

Phage therapy has not been used in patient care in Finland. Now, however, a new phage therapy project directed by Dr. Skurnik has received an €850,000 grant from the Jane and Aatos Erkko Foundation, which will propel phage therapy towards its first clinical trials in Finland. The trials could focus on such antibioticresistant bacteria as Escherichia coli in the gut or MRSA on the skin. Acne could also be targeted.

The isolation and characterisation of phages takes place in the phage therapy laboratory at the University of Helsinki, where patient isolates will also be tested for phage sensitivity in order to identify appropriate phages for therapy. Clinical trials will be carried out at the Helsinki University Hospital, and a preparation line of phage therapy products will be set up in the Hospital pharmacy.

"The phage therapy products need to fulfill the drug quality requirements similar to other drugs," professor Skurnik reminds.

Phages for use against clinically relevant bacteria have been collected at both the University of Helsinki and University of Jyväskylä, and presently comprise close to 200 different phages.

"We are also discussing with other European phage scientists how to distribute phages between different laboratories in Europe. It could be possible if Europe had 2 or 3 central repositories for phages. These would receive phages from researchers, store and characterise them, and phage therapy laboratories in different countries could then order phages from the repositories," Skurnik tells.


Bacteriophages -bacteria eaters - were identified already in 1896 and were studied closely in the 1920s. At that time, phage therapy was used to treat both animal and human infections - such as cholera and bubonic plague - in India, often with good results.

In Western countries the invention of antibiotics ended scientists' interest in phage therapy for several decades; however, this was not the case in Eastern Europe, especially in the former Soviet Union. The Eliava Institute in Tbilisi, Georgia, is still one of the most renowned phage therapy centres in the world. In the new millennium Western countries have realised the increasing threat of antibiotic resistance and a new interest in the potential use of phage therapy has emerged.

University of Helsinki

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to