Glowing tumors help Penn surgeons cut out brain cancer with precision

November 16, 2016

PHILADELPHIA--An experimental cancer imaging tool that makes tumors glow brightly during surgery has shown promise again in a new Penn Medicine clinical study, this time in patients with brain cancer. The fluorescent dye technique, originally developed by surgeons at the Penn Center for Precision Surgery to treat lung cancer, illuminated brain tumors in real-time during surgery, helping physicians distinguish between healthy and cancerous tissue. Each year, over 15,000 people in the United States undergo surgeries to remove brain tumors.

Findings from the pilot study, led by first author John Y.K. Lee, MD, MSCE, an associate professor of Neurosurgery in the Perelman School of Medicine at the University of Pennsylvania, and co-director of the Center for Precision Surgery, were reported in this week in Neurosurgery.

A big challenge with brain surgery is ensuring the entire tumor is removed. It is difficult to identify the margins of the tumor with current approaches. Cancer tissue not visible to the naked eye or felt by fingers is often missed during tumor removal, leading to recurrence in some patients - about 20 to 50 percent.

Penn's approach, which relies on an injectable dye that accumulates in cancerous tissues more so than normal tissues, may help change that.

"Fluorescent contrast agents take visualization to a whole new level," Lee said. "It has the potential for real-time imaging, identification of disease, and most importantly, precise detection of the tumor's margins. With this, we know better where to cut."

The study also includes co-author, Sunil Singhal, MD, an associate professor of Surgery, and co-director the Center for Precision Surgery at Penn's Abramson Cancer Center, who first started work on this approach in his lab nearly 10 years ago.

The technique uses near-infrared, or NIR, imaging and the contrasting agent indocyanine green (ICG), which fluoresces a bright green under NIR light. ICG was developed during World War II as a dye in photography and, in 1958, it was approved by the U.S. Food and Drug Administration (FDA) for use in medicine, primarily in liver diagnostics and later in cardiology.

However, for this study, researchers used a modified version of ICG at a higher concentration delivered intravenously about 24 hours before surgery to ensure margins were included. This is the first time, to the authors knowledge, that this delayed imaging of ICG has been used to visualize brain tumors.

Patients enrolled in the clinical study were between the ages of 20 and 81 with a diagnosis of a solitary brain tumor and a presumed glioma based on imaging or prior surgery or biopsy.

Twelve of the 15 tumors demonstrated strong intraoperative fluorescence. The lack of glow in the three remaining tumors could potentially be due to their disease grade and timing of the injection, the authors suggested.

Eight of the 15 patients demonstrated a visible glow through the dura, a thick membrane on the meninges of the brain, was opened, demonstrating the technology's ability to see deeply within the brain before the tumor is exposed. Once opened, all tumors were picked up by NIR imaging.

The researchers also studied the surgical margins using neuropathology and magnetic resonance imaging, (MRI) to assess the accuracy and precision of NIR fluorescence in identifying tumor tissue.

Of the 71 specimens collected from MRI-enhanced tumors and their surgical margins, 61 (85.9 percent) fluoresced and 51 of these (71.8 percent) were classified as glioma tissue

Of the 12 MRI-enhancing gliomas, four patients had biopsy specimens that were both non-fluorescent and negative for tumor, which matched the gross total resection seen on their MRI. In contrast, 8 patients had residual fluorescent signal in the resection cavity. Only 3 of these patients showed gross total resection on MRI. This suggests a benefit of true-negative NIR signal after resection, the authors said

Over the past three plus years, Singhal, Lee, and their colleagues have performed more than 300 surgeries with the imaging tool in patients with various types of cancer, including lung, brain, bladder and breast.

"This technique, if approved by the FDA, may offer great promise to physicians and patients," Singhal said. "It's a strategy that could allow greater precision across many different cancer types, help with early detection, and hopefully better treatment success."
Other Penn co-authors include Jayesh P. Thawani, John Pierce, Ryan Zeh, Maria Martinez-Lage, Michelle Chanin, Ollin Venegas, Sarah Nims, Kim Learned, and Jane Keating,.

This work was supported with grants from the National Institutes of Health (R01 CA193556), the Institute for Translational Medicine and Therapeutics at Penn, and the National Center for Advancing Translational Sciences of the National Institutes of Health (UL1TR000003).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania(founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.

University of Pennsylvania School of Medicine

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to