Secrets of succulents' water-wise ways revealed

November 16, 2017

Plant scientists at the University of Liverpool have revealed new insights into the mechanisms that allow certain plants to conserve water and tolerate drought.

The research, which is published in The Plant Cell, could be used to help produce new crops that can thrive in previously inhospitable, hot and dry regions across the world.

Drought resistant plants, such as cacti, agaves and succulents, make use of an enhanced form of photosynthesis known as crassulacean acid metabolism, or CAM, to minimise water loss.

Photosynthesis involves taking carbon dioxide from the atmosphere to convert into sugars using sunlight. Unlike other plants, CAM plants are able to take up CO2 during the cooler night, which reduces water loss, and store captured CO2 as malic acid inside the cell, allowing its use for photosynthesis without water loss during the next day.

CAM photosynthesis is regulated by the plant's internal circadian clock, which allows plants to differentiate and pre-empt day and night and adjust their metabolism accordingly. However, relatively little is known about the exact molecular processes that underpin the optimal timing of CO2 being stored and released in this unique way.

A team of researchers at the University's Institute of Integrative Biology looked at an enzyme of interest called PPCK that is involved in controlling the conversion of CO2 to its overnight stored form (malic acid; the fruit acid that makes apples taste sharp) and back again. They wanted to know whether PPCK is a necessary component for engineering CAM photosynthesis and tested this by switching the PPCK gene off in the succulent CAM plant Kalanchoë fedtschenkoi.

They found that, for CAM to work properly, the cells must switch on PPCK each night driven by their internal circadian clock. When they prevented Kalanchoë from making PPCK at night, the plants could only capture a third of the CO2 captured by the normal plants.

In addition, they found that the plants that were unable to make PPCK each night had alterations in their circadian clock, a surprising finding that suggests metabolites associated with CAM communicate time-of-day information into the plant's central timekeeper.

Dr James Hartwell commented: "Drought is a key cause of global crop losses, so understanding the mechanisms that some desert-adapted plants have evolved to survive water stress is vital for engineering improved drought tolerance in crop species.

"Our work demonstrates that ongoing efforts to engineer CAM photosynthesis into other plants will need to include PPCK. The unexpected complexity we revealed in the relationship between PPCK, CAM and the circadian clock also highlights the need for continued research into CAM processes before we can fully understand and exploit their ways."
-end-
The research is featured on the front cover of this month's edition The Plant Cell and received funding support from the U.S. Department of Energy (Office of Science, Genomic Science Program) and the Biotechnology and Biological Sciences Research Council.

University of Liverpool

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.