Nav: Home

Yale team's advance allows gene editing with surgical precision

November 16, 2017

Yale researchers report they have created a more precise and efficient technology to edit the genomes of living organisms, an ability that is transforming medicine and biotechnology. The new method, described Nov. 16 in the journal Cell, eliminates some of the drawbacks of genome editing technologies, which enables scientists to insert or eliminate genes within DNA.

"You can think of existing technology as a hacksaw and this method as a scalpel that enables us to make precise genetic modifications with high efficiency at multiple sites within the genome of a eukaryote," said senior author Farren Isaacs, associate professor of molecular, cellular & developmental biology at the Systems Biology Institute on Yale's West Campus.

Existing gene editing technology, for example CRISPR/cas9, typically breaks two strands of DNA when introducing genetic modifications. Organisms mobilize in an effort to repair those breaks in DNA, which can be lethal to cells. However, sometimes those breaks aren't fixed or repairs create tiny DNA sequence errors that can alter the function.

"Breaking and creating errors in genes is not true editing," said Edward Barbieri, a recent Ph.D. graduate from Yale and lead author of the study.

The Yale team engineered this DNA replication and repair function in yeast so that new genetic information can be inserted without double strand breaks across many different regions of the genome.

The new improved gene editing technique -- eukaryotic multiplex genome engineering (eMAGE) -- can speed efforts to replace disease-causing genes, identify and produce naturally-occurring antibiotics or cancer fighting agents and spur creation of new industrial biotechnology products, Isaacs says. The team's approach was used to generate nearly a million combinatorial genetic variants to introduce precise genetic changes across many genome sites, resulting in changes that re-tuned gene expression and metabolism.

"We can create lots of combinations of mutations, which gives us an unprecedented tool to identify driver mutations of disease and fundamentally re-program cellular behavior," Isaacs said. "Our sights are set to further develop the technology and expand to multiceullar organisms."
-end-
Other Yale authors include Paul Muir, Benjamin Akhuetie-Oni and Christopher Yellman, now of the University of Texas Austin.

The study was funded primarily by Defense Advanced Research Projects Agency, the National Institutes of Health, and the Arnold and Mabel Beckman Foundation.

Yale University

Related Dna Articles:

A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...