Nav: Home

Solar minimum surprisingly constant

November 16, 2017

Using more than half a century of observations, Japanese astronomers have discovered that the microwaves coming from the Sun at the minimums of the past five solar cycles have been the same each time, despite large differences in the maximums of the cycles.

In Japan, continuous four-frequency solar microwave observations (1, 2, 3.75 and 9.4 GHz) began in 1957 at the Toyokawa Branch of the Research Institute of Atmospherics, Nagoya University. In 1994 the telescopes were relocated to NAOJ Nobeyama Campus, where they have continued observations up to the present.

A research group led by Masumi Shimojo (Assistant Professor at NAOJ Chile Observatory), including members from Nagoya University, Kyoto University, and Ibaraki University, analyzed the more than 60 years of solar microwave data from these telescopes. They found that microwave intensities and spectra at the minimums of the latest five cycles were the same every time. In contrast, during the periods of maximum solar activity, both the intensity and spectrum varied from cycle to cycle.

Masumi Shimojo explains that, "Other than sunspot observations, uniform long-term observations are rare in solar astronomy. It is very meaningful to discover a trend extending beyond a single solar cycle. This is an important step in understanding the creation and amplification of solar magnetic fields, which generate sunspots and other solar activity."

The Sun goes through a cycle of active and quiet periods approximately once every 11 years. This "solar cycle" is often associated with the number of sunspots, but there are other types of solar activity as well. So simply counting the number of sunspots is insufficient to understand the solar activity conditions.

Microwaves are another indicator of solar activity. Microwaves have the advantage that, unlike sunspots, they can be observed on cloudy days. Also, monitoring multiple frequencies of microwaves makes it possible to calculate the relative strength at each frequency (this is called the spectrum).
-end-


National Institutes of Natural Sciences

Related Solar Activity Articles:

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.
Solar wind samples suggest new physics of massive solar ejections
A new study led by the University of Hawai'i (UH) at Mānoa has helped refine understanding of the amount of hydrogen, helium and other elements present in violent outbursts from the Sun, and other types of solar 'wind,' a stream of ionized atoms ejected from the Sun.
Parker Solar Probe traces solar wind to its source on sun's surface: coronal holes
New data from the Parker Solar Probe, which got closer to the sun than any other spacecraft, allowed physicists to map the source of a major component of the solar wind that continually peppers Earth.
3D maps of gene activity
A three-dimensional computer model enables scientists to quickly determine which genes are active in which cells, and their precise location within an organ.
Is physical activity always good for the heart?
Physical activity is thought to be our greatest ally in the fight against cardiovascular disease.
Predicting terror activity before it happens
Data scientist have developed a model that utilizes publicly available data to accurately predict how lethal a terror organization will become in the future based on only its first 10 attacks.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.
What happens when schools go solar?
Rooftop solar projects at schools could reduce harmful air pollution, help the environment and enhance student learning while cutting electricity costs, a new study finds.
Autism: Brain activity as a biomarker
Researchers from Jülich, Switzerland, France, the Netherlands, and the UK have discovered specific activity patterns in the brains of people with autism.
More Solar Activity News and Solar Activity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.