Using eDNA to identify the breeding habitat of endangered species

November 16, 2017

Using wide-ranging eDNA analysis combined with traditional collection survey methods, Japanese researchers have identified the breeding site of critically endangered fish species Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan. The findings were published on November 14 in the online edition of The Science of Nature - Naturwissenschaften.

Surveying aquatic organisms is a lengthy and laborious process, and covering a wide area also comes with high costs. Environmental DNA (eDNA) analysis provides a solution to these issues. In underwater environments such as lakes, reservoirs and rivers, we can find fragments of DNA drifting in the water from feces, skin or any other source of water-dwelling organisms. Analysis of eDNA is particularly effective for rare species such as A. typus, which is difficult to find through traditional survey methods because of its low population densities. In this study, the research team carried out a wide-ranging eDNA survey followed by a traditional collection survey to find the new breeding habitat of A. typus in the Omono River, Akita prefecture, Japan.

For three days in August 2016 the team collected surface water samples from 99 locations, covering 112km of the Omono River, and extracted eDNA from the samples. They measured the DNA using a specific detection system for A. typus. After this, they placed fixed nets and bottle traps in places where the eDNA had been detected and confirmed the presence of adult fish. The team also used bivalves (where A. typus lay eggs) to confirm that they were breeding.

In the 99 locations of the Omono river surveyed, A. typus eDNA was found in 2 places, and in one of these locations the team captured one male and one female specimen. Eggs were found in the bivalve at the same place, so they were successfully able to identify it as the A. typus breeding site.

These findings demonstrate that in terms of cost and reliability, a combination of eDNA analysis and traditional collection methods is highly effective in identifying the habitats and breeding areas of rare species. The methods complement each other: the eDNA method is suited to surveying wide areas, while sample collection is very reliable for confirming species. This combination of methods could help to conserve this species by finding more breeding areas and establishing conservation areas. It could also be used for other rare and endangered species with a low population density spread across a wide area.
This research was carried out by a team of four: SAKATA Masayuki (graduate student at the Kobe University Graduate School of Human Development and Environment), MAKI Nobutaka (Pacific Consultants Co., Ltd), Professor SUGIYAMA Hideki (Akita Prefectural University) and Associate Professor MINAMOTO Toshifumi (Kobe University Graduate School of Human Development and Environment).

Kobe University

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to