Nav: Home

When not seeing is believing

November 16, 2018

A year ago, astronomers identified the first interstellar visitor to our solar system. 'Oumuamua was studied by nearly every telescope available, including the ultra-sensitive Spitzer infrared space telescope. Despite a whopping 33 hours of observation time, 'Oumuamua proved too faint for Spitzer to see. Nevertheless, this allowed the observation team to draw significant conclusions. Their analysis of the visitor was published online on 14 November by The Astronomical Journal. 'If other interstellar objects look like this, there is something wrong with our models of planetary formation', says University of Groningen astronomer Michael Mueller.

In October 2017, astronomers detected an asteroid-like object with a peculiar orbit. After several checks, it was confirmed that the object originated from outside our solar system and was already on its way out. 'The initial detection was made by the Pan-STARRS survey telescope, which is dedicated to finding asteroids which have an orbit that brings them close to the Earth', explains Michael Mueller. He works on the MIRI instrument of the new James Webb Space Telescope at SRON, the Netherlands Institute for Space Research, and at the University of Groningen Kapteyn Institute for Astronomy, but is also involved in studies of 'Near Earth Asteroids'.

Observation frenzy

The American Congress has given the space organization NASA the task of finding these asteroids, as they can pose a threat to life on Earth - as did the impact of the large asteroid that probably wiped out the dinosaurs. 'As a result, we now have telescopes dedicated to finding new objects in the sky', says Mueller. 'Previously, there were a few objects that appeared to come from outside the solar system, but each time additional observations ruled this out'. That was until October 2017, when the object now known as 'Oumuamua was the first to be confirmed as a visitor from interstellar space.

This sparked an observation frenzy among astronomers. 'The first results told us how much light the object reflected. The light curve showed large variations, which meant that the object was probably elongated and tumbling'. The length-to-width ratio was estimated to be 6:1, making it cigar shaped, although a pancake shape is also possible. However, the size could not be determined from the visible light reflection. 'The resolution was not good enough to measure it', Mueller adds.


A better way to determine its size would be to measure thermal radiation, the amount of absorbed energy which 'Oumuamua sends back into space at infrared frequencies. That is where Spitzer and Mueller came in. Mueller works regularly with the team that studies asteroids using this infrared space telescope. 'We have observation protocols for this kind of work and, based on models of asteroids and the data on visible light reflection, we calculated that 33 hours of observation time should give us valuable information'.

The team applied for 'Director's Discretionary Time' at Spitzer and after a rapid but thorough review, were given their 33 hours. 'That is a lot', remarks Mueller. 'Most astronomers would be very happy with just one hour on this telescope'.

In November 2017, a month after the discovery of 'Oumuamua, Spitzer was pointed towards the location of the object for a total of 33 hours. However, when the data were analysed, there was no sign of the object. 'But we know that even this was significant', explains Mueller. They could now set an upper limit for the amount of thermal radiation emitted by the object. The first conclusion was that it could not be very big, about 140 metres long at most. 'For a larger object, the thermal radiation would have been visible'.

Planet formation

A second conclusion was that the object could not emit much carbon monoxide or carbon dioxide, as these gases are very visible in the infrared frequencies that Spitzer observes. Such emissions would be expected from a comet-like object, and would also explain why 'Oumuamua was accelerating when it left the solar system: the emission of gas, induced by heat from the sun, would act as a propellant. Mueller adds that 'Optical observations showed that it was not emitting much dust either, and dust comes off as water evaporates. So, it just did not look like a comet. It could be a standard rocky object, perhaps with a rough surface that would make it cooler'. Fine surface sand - like that found on the Moon - acts as an insulator and would have produced a warmer object.

This conclusion is unexpected. 'Interstellar objects are ejected from their own star system. This is easier for comet-like objects that form in the outer regions, where there are lots of volatiles', says Mueller. So, an interstellar visitor is likely to contain volatiles. However, 'Oumuamua appeared to be a rocky object associated with the inner regions of a star system. Of course, it is the first interstellar object to be observed, so it might not be representative. 'But if other interstellar objects look like this, there is something wrong with our models of planet formation', Mueller concludes.

He has high hopes of observing more interstellar objects like 'Oumuamua in the near future. 'With increased monitoring for Near Earth Asteroids, we are bound to find more of these visitors from outside our own solar system'.
Reference: David E. Trilling et al: Spitzer Observations of Interstellar Object 1I/'Oumuamua. Astronomical Journal, December 2018

University of Groningen

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".