Nav: Home

Cells decide when to divide based on their internal clocks

November 16, 2018

The time of day, determined by a cell's internal clock, has a stronger influence on cell division than previously thought, reveals a new study.

Cells replicate by dividing, but scientists still don't know exactly how they decide when to split. Deciding the right time and the right size to divide is critical for cells - if something goes wrong it can have a big impact, such as with cancer, which is basically a disease of uncontrolled cell division.

Several factors are thought to play a role in a cell's decision to divide, including the size of the cell, the time of day, and cues from the environment, such as the amount of light.

Now, in a study with single-celled organisms called cyanobacteria, scientists from the University of Cambridge and Imperial College London have shown how the time of day affects when cells divide, and at what size.

Cells, and whole organisms, respond to the time of day in a pattern according to their internal 'circadian clock'. For example, in mammals the circadian clock controls cell regeneration and the release of hormones, and in plants it controls flower opening and photosynthesis.

Published in the journal Proceedings of the National Academy of Sciences, the new study by scientists at the Sainsbury Laboratory Cambridge University (SLCU) and the Department of Mathematics at Imperial College London shows that the circadian clock continuously influences cyanobacteria cell division throughout the day and night.

This finding rewrites the most recent understanding that the clock was only acting as an 'on/off' switch to cell division - enabling cells to replicate only at set times.

The team designed a set of experiments with colonies of cyanobacteria to pick apart the influence of time of day, size of cell, and the presence of light on cell division.

First, they observed division rates for cyanobacteria altered to lack circadian clocks, as well as rates of unaltered cells under constant light conditions.

Using the division patterns from these experiments, and what was thought to influence them, Imperial mathematicians and collaborators then designed models to predict what would happen if the light changed over the course of future experiments.

In the subsequent experiments, the team found that rather than the circadian clock acting like an on/off switch or 'gate', forbidding cell division at certain times, it acts to fine tune the process by decreasing division at certain times and accelerating it at others.

What they found matched the second set of experiments well, meaning their models successfully described the mechanisms at play.

Dr Philipp Thomas, from the Department of Mathematics at Imperial, said: "Instead of acting as a strict gate for cell division, the circadian clock constantly influences the division rate throughout the day. Unpicking the complex interactions between cell size, clock and environment was only possible through the careful combination of experiments and iterative models that determined the contribution of the factors at play."

The timing pattern identified led to two sub-populations of cyanobacteria that divided at different sizes, depending on what time cells where born.

Lead author of the study, Dr Bruno Martins from the University of Cambridge, said: "Cells born in the early part of the day grow to a smaller size before dividing again, because they seem to be in a 'rush' to divide before the end of the day. In contrast, cells born later in the day are in less of a 'rush', and therefore they grow to a bigger size, and avoid dividing in the period that normally corresponds to darkness at night."

The team will next use their experimental results and the models developed to explain them to look at what molecules and genes are involved in this process and to explore its evolutionary function.
The research was funded by OpenPlant, BBSRC, the Royal Commission for the Exhibition of 1851 and the Gatsby Charitable Foundation.

Imperial College London

Related Cell Division Articles:

Discovery of a novel chromosome segregation mechanism during cell division
When cells divide, chromosomes need to be evenly segregated. This equal distribution is important to accurately pass genetic information to the next generation.
Researchers identify earliest known protein needed for cell division
Researchers from three US universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.
Study finds new target for controlling cell division
Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.
Calcium aids chromosome condensation prior to cell division
Research led by the University of Osaka found that calcium ions help maintain the structure of chromosomes during mitosis by promoting their condensation.
Live cell imaging of asymmetric cell division in fertilized plant cells
Plant biologists have succeeded for the first time in visualizing how egg cells in plants divides unequally (asymmetric cell division) after being fertilized.
Three rings stop cell division in plants
Arising from a collaboration between plant and animal biologists, and organic chemists at ITbM, Nagoya University, the group succeeded in developing a new compound, a triarylmethane that can rapidly inhibit cell division in plants.
Strong, steady forces at work during cell division
Biologists who study the mechanics of cell division have for years disagreed about how much force is at work when the cell's molecular engines are lining chromosomes up in the cell, preparing to winch copies to opposite poles across a bridge-like structure called the kinetochore to form two new cells.
Unconventional cell division in the Caribbean Sea
Bacteria are immortal as long as they keep dividing. For decades it has been assumed that a continuous, proteinaceous ring is necessary to drive the division of most microorganisms.
Differing duration of brain stem cell division
Stem cells in the developing human brain take more time to arrange the chromosomes before distribution than stem cells of great apes.
Cell division and inflammatory disease link revealed
A ground-breaking study by University of Manchester and Liverpool scientists and published in the journal eLife has identified a new link between inflammation and cell division.

Related Cell Division Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...