Cells decide when to divide based on their internal clocks

November 16, 2018

The time of day, determined by a cell's internal clock, has a stronger influence on cell division than previously thought, reveals a new study.

Cells replicate by dividing, but scientists still don't know exactly how they decide when to split. Deciding the right time and the right size to divide is critical for cells - if something goes wrong it can have a big impact, such as with cancer, which is basically a disease of uncontrolled cell division.

Several factors are thought to play a role in a cell's decision to divide, including the size of the cell, the time of day, and cues from the environment, such as the amount of light.

Now, in a study with single-celled organisms called cyanobacteria, scientists from the University of Cambridge and Imperial College London have shown how the time of day affects when cells divide, and at what size.

Cells, and whole organisms, respond to the time of day in a pattern according to their internal 'circadian clock'. For example, in mammals the circadian clock controls cell regeneration and the release of hormones, and in plants it controls flower opening and photosynthesis.

Published in the journal Proceedings of the National Academy of Sciences, the new study by scientists at the Sainsbury Laboratory Cambridge University (SLCU) and the Department of Mathematics at Imperial College London shows that the circadian clock continuously influences cyanobacteria cell division throughout the day and night.

This finding rewrites the most recent understanding that the clock was only acting as an 'on/off' switch to cell division - enabling cells to replicate only at set times.

The team designed a set of experiments with colonies of cyanobacteria to pick apart the influence of time of day, size of cell, and the presence of light on cell division.

First, they observed division rates for cyanobacteria altered to lack circadian clocks, as well as rates of unaltered cells under constant light conditions.

Using the division patterns from these experiments, and what was thought to influence them, Imperial mathematicians and collaborators then designed models to predict what would happen if the light changed over the course of future experiments.

In the subsequent experiments, the team found that rather than the circadian clock acting like an on/off switch or 'gate', forbidding cell division at certain times, it acts to fine tune the process by decreasing division at certain times and accelerating it at others.

What they found matched the second set of experiments well, meaning their models successfully described the mechanisms at play.

Dr Philipp Thomas, from the Department of Mathematics at Imperial, said: "Instead of acting as a strict gate for cell division, the circadian clock constantly influences the division rate throughout the day. Unpicking the complex interactions between cell size, clock and environment was only possible through the careful combination of experiments and iterative models that determined the contribution of the factors at play."

The timing pattern identified led to two sub-populations of cyanobacteria that divided at different sizes, depending on what time cells where born.

Lead author of the study, Dr Bruno Martins from the University of Cambridge, said: "Cells born in the early part of the day grow to a smaller size before dividing again, because they seem to be in a 'rush' to divide before the end of the day. In contrast, cells born later in the day are in less of a 'rush', and therefore they grow to a bigger size, and avoid dividing in the period that normally corresponds to darkness at night."

The team will next use their experimental results and the models developed to explain them to look at what molecules and genes are involved in this process and to explore its evolutionary function.
The research was funded by OpenPlant, BBSRC, the Royal Commission for the Exhibition of 1851 and the Gatsby Charitable Foundation.

Imperial College London

Related Cell Division Articles from Brightsurf:

Cell division: Cleaning the nucleus without detergents
A team of researchers, spearheaded by the Gerlich lab at IMBA, has uncovered how cells remove unwanted components from the nucleus following mitosis.

Genetic signature boosts protein production during cell division
A research team has uncovered a genetic signature that enables cells to adapt their protein production according to their state.

Inner 'clockwork' sets the time for cell division in bacteria
Researchers at the Biozentrum of the University of Basel have discovered a 'clockwork' mechanism that controls cell division in bacteria.

Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.

Targeting cell division in pancreatic cancer
Study provides new evidence of synergistic effects of drugs that inhibit cell division and support for further clinical trials.

Scientists gain new insights into the mechanisms of cell division
Mitosis is the process by which the genetic information encoded on chromosomes is equally distributed to two daughter cells, a fundamental feature of all life on earth.

Cell division at high speed
When two proteins work together, this worsens the prognosis for lung cancer patients: their chances of survival are particularly poor in this case.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Better together: Mitochondrial fusion supports cell division
New research from Washington University in St. Louis shows that when cells divide rapidly, their mitochondria are fused together.

Seeing is believing: Monitoring real time changes during cell division
Scientist have cast new light on the behaviour of tiny hair-like structures called cilia found on almost every cell in the body.

Read More: Cell Division News and Cell Division Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.