Nav: Home

Scientists produce 3D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)--a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory--have used ultrabright x-rays to image single bacteria with higher spatial resolution than ever before. Their work, published in Scientific Reports, demonstrates an x-ray imaging technique, called x-ray fluorescence microscopy (XRF), as an effective approach to produce 3-D images of small biological samples.

"For the very first time, we used nanoscale XRF to image bacteria down to the resolution of a cell membrane," said Lisa Miller, a scientist at NSLS-II and a co-author of the paper. "Imaging cells at the level of the membrane is critical for understanding the cell's role in various diseases and developing advanced medical treatments."

The record-breaking resolution of the x-ray images was made possible by the advanced capabilities of the Hard X-ray Nanoprobe (HXN) beamline, an experimental station at NSLS-II with novel nanofocusing optics and exceptional stability.

"HXN is the first XRF beamline to generate a 3-D image with this kind of resolution," Miller said.

While other imaging techniques, such as electron microscopy, can image the structure of a cell membrane with very high resolution, these techniques are unable to provide chemical information on the cell. At HXN, the researchers could produce 3-D chemical maps of their samples, identifying where trace elements are found throughout the cell.

"At HXN, we take an image of a sample at one angle, rotate the sample to the next angle, take another image, and so on," said Tiffany Victor, lead author of the study and a scientist at NSLS-II. "Each image shows the chemical profile of the sample at that orientation. Then, we can merge those profiles together to create a 3-D image."

Miller added, "Obtaining an XRF 3-D image is like comparing a regular x-ray you can get at the doctor's office to a CT scan."

The images produced by HXN revealed that two trace elements, calcium and zinc, had unique spatial distributions in the bacterial cell.

"We believe the zinc is associated with the ribosomes in the bacteria," Victor said. "Bacteria don't have a lot of cellular organelles, unlike a eukaryotic (complex) cell that has mitochondria, a nucleus, and many other organelles. So, it's not the most exciting sample to image, but it's a nice model system that demonstrates the imaging technique superbly."

Yong Chu, who is the lead beamline scientist at HXN, says the imaging technique is also applicable to many other areas of research.

"This 3-D chemical imaging or fluorescence nanotomography technique is gaining popularity in other scientific fields," Chu said. "For example, we can visualize how the internal structure of a battery is transforming while it is being charged and discharged."

In addition to breaking the technical barriers on x-ray imaging resolution with this technique, the researchers developed a new method for imaging the bacteria at room temperature during the x-ray measurements.

"Ideally, XRF imaging should be performed on frozen biological samples that are cryo-preserved to prevent radiation damage and to obtain a more physiologically relevant understanding of cellular processes," Victor said. "Because of the space constraints in HXN's sample chamber, we weren't able to study the sample using a cryostage. Instead, we embedded the cells in small sodium chloride crystals and imaged the cells at room temperature. The sodium chloride crystals maintained the rod-like shape of the cells, and they made the cells easier to locate, reducing the run time of our experiments."

The researchers say that demonstrating the efficacy of the x-ray imaging technique, as well as the sample preparation method, was the first step in a larger project to image trace elements in other biological cells at the nanoscale. The team is particularly interested in copper's role in neuron death in Alzheimer's disease.

"Trace elements like iron, copper, and zinc are nutritionally essential, but they can also play a role in disease," Miller said. "We're seeking to understand the subcellular location and function of metal-containing proteins in the disease process to help develop effective therapies."
-end-
The work was supported by DOE's Office of Science, the National Institutes of Health, and the National Science Foundation.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

DOE/Brookhaven National Laboratory

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.