New method brings physics to deep learning to better simulate turbulence

November 16, 2020

Deep learning, also called machine learning, reproduces data to model problem scenarios and offer solutions. However, some problems in physics are unknown or cannot be represented in detail mathematically on a computer. Researchers at the University of Illinois Urbana-Champaign developed a new method that brings physics into the machine learning process to make better predictions.

The researchers used turbulence to test their method.

"We don't know how to mathematically write down all of turbulence in a useful way. There are unknowns that cannot be represented on the computer, so we used a machine learning model to figure out the unknowns. We trained it on both what it sees and the physical governing equations at the same time as a part of the learning process. That's what makes it magic and it works," said Willett Professor and Head of the Department of Aerospace Engineering Jonathan Freund.

Freund said the need for this method was pervasive.

"It's an old problem. People have been struggling to simulate turbulence and to model the unrepresented parts of it for a long time," Freund said.

Then he and his colleague Justin Sirignano had an epiphany.

"We learned that if you try to do the machine learning without considering the known governing equations of the physics, it didn't work. We combined them and it worked."

When designing an air or spacecraft, Freund said this method will help engineers predict whether or not a design involving turbulent flow will work for their goals. They'll be able to make a change, run it again to get a prediction of heat transfer or lift, and predict if their design is better or worse.

"Anyone who wants to do simulations of physical phenomena might use this new method. They would take our approach and load data into their own software. It's a method that would admit other unknown physics. And the observed results of that unknown physics could be loaded in for training," Freund said.

The work was done using the super-computing facility at the National Center for Supercomputing at UIUC known as Blue Waters, making the simulation faster and so more cost efficient.

The next step is to use the method on more realistic turbulence flows.

"The turbulent flow we used to demonstrate the method is a very simple configuration," Freund said. "Real flows are more complex. I'd also like to use the method for turbulence with flames in it--a whole additional type of physics. It's something we plan to continue to develop in the new Center for Exascale-enabled Scramjet Design, housed in NCSA."

Freund said this work is at the research level but can potentially affect industry in the future.

"Universities were very active in the first turbulence simulations, then industry picked them up. The first university-based large-eddy simulations looked incredibly expensive in the 80s and 90s. But now companies do large-eddy simulations. We expect this prediction capability will follow a similar path. I can see a day in the future with better techniques and faster computers that companies will begin using it."
-end-
The study, "DPM: A deep learning PDE augmentation method with application to large-eddy simulation," was written by Justin Sirignano, Jonathan F. MacArt, and Jonathan B. Freund. It is published in the Journal of Computational Physics. DOI: 10.1016/j.jcp.2020.109811

This research is supported by the Department of Energy, National Nuclear Security Administration. It is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation and the State of Illinois. Blue Waters is a joint effort of the University of Illinois Urbana-Champaign and its National Center for Supercomputing Applications.

University of Illinois Grainger College of Engineering

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.