Looking inside the glass

November 16, 2020

Tokyo, Japan - A team of researchers from the Institute of Industrial Science at The University of Tokyo used advanced electron spectroscopy and computer simulations to better understand the internal atomic structure of aluminosilicate glass. They found complex coordination networks among aluminum atoms within phase-separated regions. This work may open the possibility for improved glasses for smart device touchscreens.

As the demand for smartphones, tablets, and solar panels increases, so too will the need for more high-quality, tough, transparent glass. One of the candidate materials for these applications is called aluminosilicate glass, which is made of aluminum, silicon, and oxygen. As with all amorphous materials, the glass does not form a simple lattice but exists more like a disordered "frozen liquid." However, intricate structures can still form between that have not yet been analyzed by scientists.

Now, a team of researchers at The University of Tokyo have used electron energy loss fine structure spectroscopy with a scanning transmission electron microscope to reveal the local arrangement of atoms within a glass made of 50% aluminum oxide (Al2O3) and 50% silicon dioxide (SiO2). "We chose to study this system because it is known to phase separate into aluminum-rich and silicon-rich regions" first author Kun-Yen Liao says. When imaging with an electron microscope, some emitted electrons undergo inelastic scattering, which causes them to lose some of their original kinetic energy. The amount of energy dissipated varies based on the location and type of atom or cluster of atoms in the glass sample it hit. Electron loss spectroscopy is sensitive enough to tell the difference between aluminum coordinated in tetrahedral as opposed to octahedral clusters. By fitting the profile of the electron energy loss fine structure spectra pixel by pixel, the abundance of the various aluminum structures was determined with nanometer precision. The team also used computer simulations to interpret the data. "Aluminosilicate glasses can be manufactured to resist high temperatures and compressive stresses. This makes them useful for a wide range of industrial and consumer applications, such as touch displays, safety glass, and photovoltaics," senior author Teruyasu Mizoguchi says. Because aluminosilicate is also naturally occurring, this technique can also be used for geological research. The work is published in The Journal of Physical Chemistry Letters as "Revealing Spatial Distribution of Al Coordinated Species in a Phase-separated Aluminosilicate Glass by STEM-EELS".
-end-
About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Institute of Industrial Science, The University of Tokyo

Related Glass Articles from Brightsurf:

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.

The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.

Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.

On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.

Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.

Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.

Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.

New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.

In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.

New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?

Read More: Glass News and Glass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.