Surrey reveals simple method to produce high performing Lithium Selenium batteries

November 16, 2020

Rechargeable lithium-ion batteries (LIBs) are considered the best hope for next-generation battery technology, thanks to their long-life cycle, high specific power and energy density. However, they have not met the ever-increasing demands of emerging technologies such as electric vehicles. Li-Se battery technology is increasingly considered a real alternative to LIBs because of its high theoretical volume capacity and much higher conductivity.

In the first study of its kind, published by the Nature Communications journal, engineers from Surrey's Advanced Technology Institute (ATI), in collaboration with the team at University Technology of Sydney detail how they used a single-atom catalyst to create highly effective cathodes for Li-Se batteries. They demonstrate that their batteries have a superior rate capability and outstanding long-term cycling performance.

The Surrey team used to delicately control Zeolitic Imidazolate Framework (ZIF) particles that were placed on the surface of polystyrene spheres. The core-shell of the ZIF was then converted into a hollow structured carbon material.

Through further fine-tuning, the team from the ATI successfully produced atomic cobalt electrocatalyst, nitrogen-doped hollow porous carbon, nitrogen-doped hollow porous carbon and cobalt nanoparticles. By embedding selenium in hollow structured carbon particles, carbon/selenium composites were produced.

The atomic cobalt electrocatalysts were used as cathode materials for Li-Se batteries and clearly showed superior electrochemical performance including a superior rate capability (311?mA?h?g?1 at 50?C) and excellent cycling stability (267?mA?h?g?1 after 5000 cycles with a 0.0067% capacity decay per cycle at a current density of 50?C) with the Coulombic efficiency of ~100%.

Dr Jian Liu, one of the lead authors and Reader (Associate Professor) of Energy Materials at the ATI, said:

"We truly believe that our atomic cobalt-doped synthesized material can pave the way for Lithium Selenium batteries to be the go-to battery technology for future generations. While our results are incredibly encouraging, there is still some way to go to make our dream of high-capacity, sustainable battery technology a reality."

Professor Ravi Silva, Director of the ATI at the University of Surrey, said:

"We are incredibly proud of the highly creative and excellent work that Dr Liu's team has produced - a piece of research that may be a defining moment for sustainable battery technology development."
-end-


University of Surrey

Related Batteries Articles from Brightsurf:

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Fast calculation dials in better batteries
A simpler and more efficient way to predict the performance of batteries will lead to better batteries, according to Rice University engineers.

Building the batteries of cells
A new study, led by Dr. Ruchika Anand and Prof.

Researchers create a roadmap to better multivalent batteries
Lithium-ion batteries power everything from mobile phones to laptop computers and electric vehicles, but demand is growing for less expensive and more readily available alternatives.

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.

Read More: Batteries News and Batteries Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.