Bursts of exercise can lead to significant improvements in indicators of metabolic health

November 16, 2020

BOSTON - Short bursts of physical exercise induce changes in the body's levels of metabolites that correlate to, and may help gauge, an individual's cardiometabolic, cardiovascular and long-term health, a study by Massachusetts General Hospital (MGH) has found. In a paper published in Circulation, the research team describes how approximately 12 minutes of acute cardiopulmonary exercise impacted more than 80% of circulating metabolites, including pathways linked to a wide range of favorable health outcomes, thus identifying potential mechanisms that could contribute to a better understanding of cardiometabolic benefits of exercise.

"Much is known about the effects of exercise on cardiac, vascular and inflammatory systems of the body, but our study provides a comprehensive look at the metabolic impact of exercise by linking specific metabolic pathways to exercise response variables and long-term health outcomes," says investigator Gregory Lewis, MD, section head of Heart Failure at MGH and senior author of the study. "What was striking to us was the effects a brief bout of exercise can have on the circulating levels of metabolites that govern such key bodily functions as insulin resistance, oxidative stress, vascular reactivity, inflammation and longevity."

The MGH study drew on data from the Framingham Heart Study to measure the levels of 588 circulating metabolites before and immediately after 12 minutes of vigorous exercise in 411 middle-aged men and women. The research team detected favorable shifts in a number of metabolites for which resting levels were previously shown to be associated with cardiometabolic disease. For example, glutamate, a key metabolite linked to heart disease, diabetes and decreased longevity, fell by 29%. And DMGV, a metabolite associated with increased risk of diabetes and liver disease, dropped by 18%. The study further found that metabolic responses may be modulated by factors other than exercise, including a person's sex and body mass index, with obesity possibly conferring partial resistance to the benefits of exercise.

"Intriguingly, our study found that different metabolites tracked with different physiologic responses to exercise, and might therefore provide unique signatures in the bloodstream that reveal if a person is physically fit, much the way current blood tests determine how well the kidney and liver are functioning," notes co-first author Matthew Nayor, MD, MPH, with the Heart Failure and Transplantation Section in the Division of Cardiology at MGH. "Lower levels of DMGV, for example, could signify higher levels of fitness."

The Framingham Heart Study, which began in 1948 and now embraces three generations of participants, allowed MGH researchers to apply the same signatures used in the current study population to stored blood from earlier generations of participants. By studying the long-term effects of metabolic signatures of exercise responses, researchers were able to predict the future state of an individual's health, and how long they are likely to live.

"We're starting to better understand the molecular underpinnings of how exercise affects the body and use that knowledge to understand the metabolic architecture around exercise response patterns," says co-first author Ravi Shah, MD, with the Heart Failure and Transplantation Section in the Division of Cardiology at MGH. "This approach has the potential to target people who have high blood pressure or many other metabolic risk factors in response to exercise, and set them on a healthier trajectory early in their lives."
-end-
Lewis is associate professor of Medicine at Harvard Medical School and director of the Cardiopulmonary Exercise Testing Laboratory at MGH. Nayor is a cardiologist at MGH and instructor of Medicine at Harvard Medical School, and Shah is a cardiologist at MGH and assistant professor of Medicine at Harvard Medical School. Other co-authors include Ramachandran Vasan, MD, professor of Medicine at Boston University and principal investigator of the Framingham Heart Study, and Clary Clish, PhD, senior director of Metabolomics at the Broad Institute of MIT and Harvard.

The study was supported by the American Heart Association's Grand Challenge Award and the National Institutes of Health.

About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of more than $1 billion and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. In August 2020, Mass General was named #6 in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.