New fiber optic sensors transmit data up to 100 times faster

November 16, 2020

EPFL engineers have developed an advanced encoding and decoding system that allows fiber optic sensors to send data up to 100 times faster and over a wider area. "Unlike conventional sensors that take measurements at a given point, like thermometers, fiber optic sensors record data all along a fiber," says Luc Thévenaz, a professor at EPFL's School of Engineering and head of the Group for Fibre Optics (GFO). "But the technology has barely improved over the past few years."

Used widely in safety applications

Fiber optic sensors are commonly used in hazard detection systems, such as to spot cracks in pipelines, identify deformations in civil engineering structures and detect potential landslides on mountain slopes. The sensors can take temperature readings everywhere a fiber is placed, thereby generating a continuous heat diagram of a given site - even if the site stretches for dozens of kilometers. That provides crucial insight into possible accidents before they happen.

Improving signal quality

Working in association with the Beijing University of Posts and Telecommunications, two GFO engineers - postdoc Zhisheng Yang and PhD student Simon Zaslawski - developed a new system for encoding and decoding data sent along the fibers. With their method, sensors can receive higher-energy signals and decode them faster, resulting in measurements taken more rapidly and over a larger area. Their research has just been published in Nature Communications.

The engineers describe their system as working like an echo. If you shout a single word, you hear that word back. But if you sing out a song, what you hear back is a blend of sounds that are hard to distinguish. You would need a "key" to decipher the sounds and make them intelligible. Fiber optic sensors function in a similar manner, except that an instrument sends out light pulses - rather than sounds - along a fiber. Signals bounce back up the fiber and a device decodes them, turning the signals into usable data.

To make the sensors more efficient, Yang and Zaslawski grouped the light pulses into sequences so that the signals bounce back with greater intensity. However, that didn't solve the "echo" problem - that is, finding a key to make the signals readable. So they developed a method for encoding the data sent along a fiber; their method employs special genetic optimization algorithms to cope with imperfections. "Other systems are either limited in scope or expensive," says Thévenaz. "But with ours, you just have to add a software program to your existing equipment. No need to adapt your sensors or use complex devices."
Partner institution: Beijing University of Posts and Telecommunications

Ecole Polytechnique Fédérale de Lausanne

Related Sensors Articles from Brightsurf:

OPD optical sensors that reproduce any color
POSTECH Professor Dae Sung Chung's team uses chemical doping to freely control the colors of organic photodiodes.

Airdropping sensors from moths
University of Washington researchers have created a sensor system that can ride aboard a small drone or an insect, such as a moth, until it gets to its destination.

How to bounce back from stretched out stretchable sensors
Elastic can stretch too far and that could be problematic in wearable sensors.

New mathematical tool can select the best sensors for the job
In the 2019 Boeing 737 Max crash, the recovered black box from the aftermath hinted that a failed pressure sensor may have caused the ill-fated aircraft to nose dive.

Lighting the way to porous electronics and sensors
Researchers from Osaka University have created porous titanium dioxide ceramic thin films, at high temperatures and room temperature.

Russian scientists to improve the battery for sensors
Researchers of Peter the Great St. Petersburg Polytechnic University (SPbPU) approached the creation of a solid-state thin-film battery for miniature devices and sensors.

Having an eye for colors: Printable light sensors
Cameras, light barriers, and movement sensors have one thing in common: they work with light sensors that are already found in many applications.

Improving adhesives for wearable sensors
By conveniently and painlessly collecting data, wearable sensors create many new possibilities for keeping tabs on the body.

Kirigami inspires new method for wearable sensors
As wearable sensors become more prevalent, the need for a material resistant to damage from the stress and strains of the human body's natural movement becomes ever more crucial.

Wearable sensors detect what's in your sweat
A team of scientists at the University of California, Berkeley, is developing wearable skin sensors that can detect what's in your sweat.

Read More: Sensors News and Sensors Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to