Cal-(IT)², UC San Diego researchers team with Canada's BigBangwidth to speed 'Optiputer' data flows

November 17, 2003

SAN DIEGO, CA and EDMONTON, Alberta, Monday, Nov. 17, 2003 -- Researchers building a new type of Grid computing environment known as the OptIPuter have agreed to deploy BigBangwidth's next-generation lightpath technology. The system will be installed at the University of California, San Diego (UCSD), and will act as an on-ramp for large data streams from high-performance workstations connected to packet-switched networks. "This is an important system for the OptIPuter because researchers need advanced networking directly to the desktop," said Larry Smarr, OptIPuter principal investigator and director of the California Institute for Telecommunications and Information Technology [Cal-(IT)²]. "BigBangwidth's system will allow scientists to transfer files between two network hosts such as workstations, storage facilities or servers directly. As a result, interconnection speeds between the two could be many times faster."

The BigBangwidth Lightpath AcceleratorTM automatically lifts large data streams off of packet-switched networks to provide direct lightpaths to high-performance network and storage devices. "BigBangwidth originated from the University of Alberta, so we have first-hand knowledge of how important academic research projects are in the innovation process," said Dan Gatti, President and CEO of BigBangwidth. "The Lightpath Accelerator extends network performance for large file transfers, real-time back-up, visualization, and data-intensive grid computing jobs -- all critical for UCSD researchers linked to the OptIPuter network in San Diego."

The Lightpath AcceleratorTM brings up to 10 Gigabits-per-second connections directly to high-performance devices, by providing lightpaths between network hosts such as workstations and servers that are otherwise connected through a packet network. The lightpaths have minimal latency, no jitter, line-rate dedicated bandwidth, and high security -- allowing for large file transfers of up to twenty times faster than conventional LAN equipment. Because network traffic is lifted off the LAN, the Lightpath Accelerator also frees LAN resources and extends the life of current network equipment. The Lightpath Accelerator System is compatible with all IP-based networking equipment.

BigBangwidth is introducing the Lightpath Accelerator this week at Supercomputing 2003 in Phoenix, AZ. First shipments to UCSD will occur in December. The system will complement the main OptIPuter router on the campus, Chiaro Enstara, made by Chiaro Networks, Inc. Very large files can bypass the router and go directly to the desired location. "These systems enable experiments in optical network architecture, combining optical circuit switching, packet switching, and routing, while giving scientists at UCSD significantly greater capabilities in collaboration and file-sharing," said Andrew Chien, Chief Software Architect on the OptIPuter project and Director of the Center for Networked Systems (CNS) at UCSD's Jacobs School of Engineering. "Current network infrastructures are not designed for the size of files commonly found in visualization and collaboration environments." Chien's research team will use the BigBangwidth technology in ongoing protocols research, specifically to carry storage protocols such as Fiber Channel and Infiniband directly between application servers and storage.

The OptIPuter gets its name from "opt" for optical networking, "IP" for Internet Protocol, and "uter" leveraging the end of the word "computer." Researchers are prototyping the OptIPuter at UCSD as a new Grid computing and networking architecture. It is designed to enable scientists to collaborate and interact with large data sets via shared, distributed information-technology facilities linked by optical fibers, each carrying multiple wavelengths of light, or lambdas.

Added BigBangwidth CEO Gatti. "We hope this initial agreement will lead to a long-term relationship with OptIPuter scientists and Cal-(IT)², as they push the envelope of networking for Grid computing, collaboration and visualization."
About BigBangwidth
BigBangwidth provides up to 10-gigabit lightpaths directly to high-performance workstations, servers and other network devices. The Lightpath AcceleratorTM enables file transfer for use within Grid computing, visualization and large file transfer. Established in 2000, BigBangwidth currently operates in Edmonton, Alberta, Canada.

About OptIPuter
The OptIPuter is a five-year, $13.5 million project funded in October 2002 through NSF's Information Technology Research program. The project is led by the California Institute for Telecommunications and Information Technology (a partnership of UCSD and UC Irvine), and the University of Illinois at Chicago. Key partners include San Diego State University, University of Southern California (Information Sciences Institute), Northwestern University, Texas A&M, University of Amsterdam, and the U.S. Geological Survey Earth Resources Observation Systems Data Center. Industry partners include Chiaro Networks, IBM, Sun Microsystems, Telcordia Technologies, Inc., and BigBangwidth. The southern California- and Chicago-based research teams are prototyping the OptIPuter on campus, metropolitan, state, national and even international optical fiber networks.

About Center for Networked Systems
The Center for Networked Systems at UCSD is an academic-industrial partnership which supports multi-disciplinary efforts across distributed systems, networking, and network elements to address critical challenges in achieving robust, secure, manageable, and open networked systems. CNS is a part of the California Institute for Telecommunications and Information Technology.

About Cal-(IT)²
The California Institute for Telecommunications and Information Technology is one of four institutes funded through the California Institutes for Science and Innovation initiative. Created in late 2000, the institutes aim to ensure that California maintain its leadership in cutting-edge technologies. The mission of Cal-(IT)² is to extend the reach of the current information infrastructure throughout the physical world enabling anywhere/anytime access to the Internet. More than 220 professors and senior researchers from UC Irvine and UC San Diego are collaborating on interdisciplinary projects.

University of California - San Diego

Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to