Researchers find new form of hormone that helps songbirds reproduce

November 17, 2003

Scientists have known for many years that auditory cues such as song can influence hormone release and the growth of gonads in songbirds, but how the brain picks out specific sounds, interprets them correctly and translates them into hormonal and behavioral signals has remained a mystery. New evidence suggests a third form of a key reproduction hormone could be a link between song and enhanced procreation in songbirds.

It's a long-held tenet of avian biology that songbirds have just two types of a key reproduction hormone, gonadotropin-releasing hormone (GnRH), and only one actually triggers a seasonal "puberty" each spring in preparation for reproduction. But the new research shows a third form of the hormone, called lamprey GnRH-III-like hormone because it was first identified in lampreys, is also present in songbird brains.

The work by scientists from the University of Washington and the University of New Hampshire shows GnRH-III can trigger the release of luteinizing hormone from the pituitary gland and influence gonad growth, something only one of the other forms of GnRH does under normal conditions.

"This is interesting because many birds breed seasonally, and they time their breeding for favorable conditions in the spring," said George Bentley, a UW post-doctoral researcher in biology.

Bentley is lead author on a paper detailing the work that will be published in the December-January edition of the journal Brain, Behavior and Evolution. Co-authors are John Wingfield, a UW biology professor; Ignacio Moore, a UW post-doctoral researcher in biology; and Stacia Sower, a professor of biochemistry and molecular biology at the University of New Hampshire. The research also was presented earlier this month at the Society for Neuroscience annual meeting in New Orleans.

Like one other form of the hormone, GnRH-III is found in the hypothalamus, where it is released to the pituitary gland, which then triggers changes in the reproductive system, Bentley said. But unlike the other forms of the hormone, GnRH-III also is found in parts of the brain that initiate and process auditory cues.

"In some species, if a female bird hears a male of the species sing, her ovaries grow faster and she will lay more eggs," Bentley said.

In addition, tape-recorded songs from a male can trigger a rapid increase in testosterone of another male defending his territory, a phenomenon Wingfield has studied for many years.

In either case, the brain detects an external cue - birdsong - that triggers a physical or behavioral response, possibly both. Just how the responses are transmitted through the nervous system is unknown, Wingfield said. But finding a third form of GnRH in areas of the brain that produce and process birdsong holds the potential for ultimately identifying how cues such as song can be directly translated into hormone output that affects reproduction.

It could be the first step in showing that the hormone is released directly into the bloodstream from the song centers of the brain, rather than going through the hypothalamus, Wingfield said.

"We've never had a link like this for the GnRH-type molecule in these brain areas that produce and process birdsong," he said. "The fact that it's there is unique to higher vertebrates."

The researchers note the importance environment can play in reproductive responses. For instance, previous studies have shown testosterone levels in the saliva of sports fans increases when their teams win, and it decreases when their teams lose. Likewise, the widely recognized home-field advantage in sports has recently been correlated to a higher salivary testosterone level in home-team players than in visitors.

But at a time when people are increasingly concerned about environmental changes, the researchers say, there is still very little information about how organisms respond to changes in various triggers - temperature change, for example - in their environments. The scientists plan further research with GnRH-III to try to determine how the brain interprets seemingly fleeting and subtle environmental cues such as temperature fluctuation, rivalry and vocalization. The response to these cues can have a profound impact on reproduction success, Bentley said.
-end-
For more information, contact Bentley at 206-543-7623 or gb7@u.washington.edu, or Wingfield at 206-543-7622 or jwingfie@u.washington.edu.

University of Washington

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.