How receptors govern inflammatory pain

November 17, 2004

Researchers have shown in animal studies how receptors on nerve cells can become altered to produce chronic pain triggered by inflammation. They say that their findings could aid in developing new drugs to treat such chronic pain, which is distinct from the relatively short-lived pain from injury, which fades as the injury heals.

In their experiments, Bettina Hartmann and her colleagues studied receptors called AMPA receptors, which are triggered by the neurotransmitter glutamate. Such receptors are protein switches that nestle in the membranes of nerve cells and, when triggered, induce either short-term or long-term changes in the nerve cells. A short-term change might be the triggering of a single nerve impulse; but AMPA receptors have been implicated in long-lasting changes such as adjusting the strength of nerve cell connections, or synapses, in learning and memory. AMPA receptors regulate nerve cell response by opening to enhance calcium flow into the cell, heightening the cells' sensitivity to producing nerve impulses when triggered.

According to Hartmann and her colleagues, studies of spinal cord tissue showed that AMPA receptors are found in spinal cord regions known to be responsible for pain sensing, or nociception. However, they said, there had been no studies that explored what role the receptors played in whole animals.

To study that role, the researchers genetically altered mice to lack one or another type of key component, or subunit, of the AMPA receptor protein. Knocking out one type of subunit, called GluR-A, would enhance AMPA permeability to calcium; and knocking out the other, called GluR-B, would reduce its permeability. Normally, the relative fraction of AMPA receptors with GluR-A or GluR-B on the surfaces of nerve cells would determine the cell's permeability to calcium.

Importantly, the researchers found that both of the types of deficient mice showed normal response to discomforting stimuli, such as heat. Thus, their pain responses were otherwise normal.

However, when the researchers used chemicals to induced an artificial inflammation in the paws of the deficient mice, they found significant differences in responses between the two mutant mouse strains. The strain with increased permeability of their AMPA channels was significantly more sensitive to heat or mechanical pressure on their inflamed paws than were either the strain of mice with "closed" AMPA channels or the normal mice.

In similar tests, the researchers also found that the altered mice with more permeable AMPA channels showed evidence of greater persisting pain from inflammation, compared with the altered mice with less permeable channels. According to Hartmann and her colleagues, this difference "supports that acute, short-term plasticity at central nociceptive synapses is dependent on AMPA receptors and their composition."

The researchers also cited evidence from other laboratories that AMPA receptors might be involved in pain-related changes in the brain that are "involved in the perception, memory, and emotional modulation of pain."

The researchers concluded that "the present study demonstrates that AMPA receptors are important determinants of pathological nociceptive sensitivity and suggests their potential relevance in the therapeutic approaches toward the prevention and treatment of chronic inflammatory pain.

Bettina Hartmann, Seifollah Ahmadi, Paul A. Heppenstall, Gary R. Lewin, Claus Schott, Thilo Borchardt, Peter H. Seeburg, Hanns Ulrich Zeilhofer, Rolf Sprengel, and Rohini Kuner: "The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain"

Publishing in Neuron, Volume 44, Number 4, November 18, 2004, pages 637-650.

Cell Press

Related Chronic Pain Articles from Brightsurf:

Researchers are developing potential treatment for chronic pain
Researchers from the University of Copenhagen have developed a new way to treat chronic pain which has been tested in mice.

Molecular link between chronic pain and depression revealed
Researchers at Hokkaido University have identified the brain mechanism linking chronic pain and depression in rats.

How chikungunya virus may cause chronic joint pain
A new method for permanently marking cells infected with chikungunya virus could reveal how the virus continues to cause joint pain for months to years after the initial infection, according to a study published Aug.

Gastroesophageal reflux associated with chronic pain in temporomandibular joint
Gastroesophageal reflux (GERD) is associated with chronic, painful temporomandibular disorder -- pain in the temporomandibular joint -- and anxiety and poor sleep contribute to this association, according to a study in CMAJ.

One step closer to chronic pain relief
While effective drugs against chronic pain are not just around the corner, researchers from Aarhus University, Denmark, have succeeded in identifying a protein as a future potential target for medicinal drugs.

Gut bacteria associated with chronic pain for first time
In a paper published today in the journal Pain, a Montreal-based research team has shown, for the first time, that there are alterations in the bacteria in the gastrointestinal tracts of people with fibromyalgia.

Nearly 5.4 million cancer survivors suffer chronic pain
A new report finds about one in three cancer survivors (34.6%) reported having chronic pain, representing nearly 5.4 million cancer survivors in the United States.

New opioid speeds up recovery without increasing pain sensitivity or risk of chronic pain
A new type of non-addictive opioid developed by researchers at Tulane University and the Southeast Louisiana Veterans Health Care System accelerates recovery time from pain compared to morphine without increasing pain sensitivity, according to a new study published in the Journal of Neuroinflammation.

New target for chronic pain relief confirmed by scientists
A research group at Hiroshima University observed a potential new target for chronic pain treatment.

Menopause symptoms nearly double the risk of chronic pain
In addition to the other health conditions affected by estrogen, it has also been shown to affect pain sensitivity.

Read More: Chronic Pain News and Chronic Pain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to