An apple a day could protect against brain-cell damage

November 17, 2004

ITHACA, N.Y. -- A group of chemicals in apples could protect the brain from the type of damage that triggers such neurodegenerative diseases as Alzheimer's and Parkinsonism, according to two new studies from Cornell University food scientists.

The studies show that the chemical quercetin, a so-called phytonutrient, appears to be largely responsible for protecting rat brain cells when assaulted by oxidative stress in laboratory tests.

Phytonutrients, such as phenolic acids and flavanoids, protect the apple against bacteria, viruses and fungi and provide the fruit's anti-oxidant and anti-cancer benefits. Quercetin is a major flavanoid in apples. Antioxidants help prevent cancer by mopping up cell-damaging free radicals and inhibiting the production of reactive substances that could damage normal cells.

"The studies show that additional apple consumption not only may help reduce the risk of cancer, as previous studies have shown, but also that an apple a day may supply major bioactive compounds, which may play an important role in reducing the risk of neurodegenerative disorders," says Chang Y. "Cy" Lee, Cornell professor of food science at the university's New York State Agricultural Experiment Station in Geneva, N.Y.

In a study that recently appeared online and is to be published in the November/December 2004 issue of theJournal of Food Science (69(9): S357-60), Lee and his co-authors compared how two groups of rat neuronal cells fared against hydrogen peroxide, a common oxidative stressor. Only one of the two groups was pretreated with different concentrations of apple phenolic extracts.

The researchers found that the higher the concentration of apple phenolic extract, the greater the protection was for the nerve cells against oxidative stress.

"What we found was that the apple phenolics, which are naturally occurring antioxidants found in fresh apples, can protect nerve cells from neurotoxicity induced by oxidative stress," Lee said.

When Lee and co-author Ho Jin Heo, a visiting fellow at Cornell, looked at quercetin they found that it appeared to be the main agent responsible for the beneficial effect. In fact, they found quercetin works even better in protecting nerve cells against hydrogen peroxide than vitamin C, a naturally occurring antioxidant known to help prevent cell and tissue damage from oxidation. Quercetin is primarily found in apples, berries and onions.

This study, which appeared online recently, will be published in the December issue of the Journal of Agricultural and Food Chemistry .

The two studies build on Lee's 2002 findings that quercetin has stronger anti-cancer activity than vitamin C, and his 2000 findings that phytochemicals in apples have stronger anti-oxidant protective effects than vitamin C against colon and liver cancer cells.

Other studies have found that phytochemicals are associated with a reduced risk of cancer, heart disease and diabetes, and that they fight not only cancer but also bacterial and viral infections. In addition, they are anti-allergenic and anti-inflammatory.

Although Lee stresses that his studies were conducted in the laboratory, not in clinical trials with humans, he has no hesitation in recommending more apples in the diet as well as other fresh fruits and vegetables. "Indeed, I have a reason to say an apple a day keeps the doctor away," he says.

The researchers used red delicious apples grown in New York state to provide the extracts to study the effects of phytochemicals. Lee said that all apples are high in the critical phytonutrients and that the amount of phenolic compounds in the apple flesh and in the skin vary from year to year, season to season and from growing region to growing region.

The study on apple phenolics, which was co-authored by Heo and D.O. Kim, a postdoctoral researcher at Cornell, as well as S.J. Choi and D.H. Shin at Korea University, was supported in part by Heo's postdoctoral fellowship through the Korea Science and Engineering Foundation (KSEF) and the U.S. Department of Agriculture. The study on quercetin, authored by Lee and Heo, also was supported, in part, by the KSEF fellowship program and U.S. Apple Association.
-end-
Related World Wide Web sites: The following sites provide additional information on this news release. Some might not be part of the Cornell University community, and Cornell has no control over their content or availability. Study on apple phenolics: http://bookstore.myift.org/store/iftstore/newstore.cgi?itemid=22941&view=item&categoryid=928&categoryparent=928&page=1&loginid=1370366

Study on quercetin: (subscription only) http://pubs.acs.org/cgi-bin/asap.cgi/jafcau/asap/abs/jf049243r.html

Cornell University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.