Poisoning solved after millions of years

November 17, 2004

The fossil site of Messel, near Darmstadt (central Germany) is a world heritage site; it is famous throughout the world for the fossils of animals and plants from a tropical landscape 47 million years ago, all of them excellently preserved. Nowhere else have so many bats and birds been found in lake deposits. Among the mammals even the contents of the stomach are usually preserved. But how did these animals die? The well-filled stomachs are not exactly an indicator of disease or fatal debility. Until recently the cause of death was assumed to be, inter alia, gases of volcanic origin which may have collected over the lake. This might explain why the animals suffocated. But such clouds of gas - if they indeed existed - must have dispersed rapidly, given the size of the lake. It is still a moot point whether, after hundreds of thousands of years, gas was still escaping from the volcanic subsoil which formed the extinct volcanic crater lake of Messel. The University of Bonn palaeontologists on Professor Wighart von Koenigswald's team have proposed a new theory in the latest issue of the Paläontologische Zeitschrift which sheds light on the possible cause of death. While examining the fossils the researchers became aware that the deaths must have occurred at the same time of year in different years. The five pregnant mares which were found at completely different levels in the oil shale at Messel all died at the same time of year, as the foetuses were at the same stage of development. Among the tortoises there were also five pairs which died during copulation, i.e. during the breeding season.

One more piece of the puzzle was provided when the Bonn lecturer Dr. Andreas Braun noticed that there are lime deposits in the sedimentary structures of Messel. A very similar structure occurs in lake deposits which Professor von Koenigswald's doctoral student Thekla Pfeiffer discovered in Neumark-Nord. In deposits which were about 200,000 years old she was able to detect traces of the highly toxic microcystine, a poison which is produced by cyanobacteria. The researchers assume that the sedimentary structures in Messel are also due to these microbes, also known as 'blue-green algae'. The animals may therefore have died from microcystine poisoning due to the seasonal algal bloom caused by deadly cyanobacteria.

From Canada we know that during algal bloom cyanobacteria cause toxic foam to collect in the surface water. Anything that drinks this water collapses almost immediately. This is true of both land animals and birds. Observations have shown that even the tiny quantities of water drunk by bats when flying low over the water can be fatal. Many aspects of the fossil finds of Messel which were not previously understood can be explained by this theory of a seasonal growth of highly toxic cyanobacteria which was repeated year after year. The theory still awaits further confirmation. One difficulty, however, is already apparent: it will be very difficult to provide direct evidence of toxic agents after 47 million years.

University of Bonn

Related Cyanobacteria Articles from Brightsurf:

Artificial cyanobacterial biofilm can sustain green ethylene production for over a month
Ethylene is one of the most important and widely used organic chemicals.

FSU researchers find diverse communities comprise bacterial mats threatening coral reefs
A Florida State University research team found that cyanobacterial mats threatening the health of coral reefs are more diverse and complex than scientists previously knew.

Cyanobacteria as "green" catalysts in biotechnology
Researchers from TU Graz and Ruhr University Bochum show in the journal ACS Catalysis how the catalytic activity of cyanobacteria, also known as blue-green algae, can be significantly increased.

Cyanobacteria from Lake Chad analyzed for toxins
Analysis of dried cyanobacterial cakes from Lake Chad show that they are rich in needed amino acids, but some exceed WHO standards for microcystin, a potent liver toxin.

Uncovering the architecture of natural photosynthetic machinery
Researchers at the University of Liverpool have uncovered the molecular architecture and organisational landscape of thylakoid membranes from a model cyanobacterium in unprecedented detail.

Parasitic fungi keep harmful blue-green algae in check
When a lake is covered with green scums during a warm summer, cyanobacteria -- often called blue-green algae -- are usually involved.

Circadian oscillation of a cyanobacterium doesn't need all three Kai proteins to keep going
Despite conventional understanding that three Kai proteins are required for the circadian oscillation of cyanobacteria, scientists discovered that even when one of them is destroyed, the oscillation is not completely abolished but instead damped.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Method yielding high rate of D-lactate using cyanobacteria could revolutionize bioplastic production
The utilization of bioproduction to synthesize versatile chemical compounds that are usually derived from oil is vital for both the environment and resource sustainability.

Unexpected discovery: Blue-green algae produce oil
Cyanobacteria -- colloquially also called blue-green algae - can produce oil from water and carbon dioxide with the help of light.

Read More: Cyanobacteria News and Cyanobacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.