New gene silencing therapy for cervical cancer

November 17, 2005

Researchers at The University of Queensland's (UQ) Centre for Immunology and Cancer Research (CICR), based at the Princess Alexandra Hospital, have pioneered a new approach for the treatment of cervical cancer.

Lead researcher Dr Nigel McMillan said the finding was based on the method of "gene silencing", a novel technique to target and turn off single genes in a cell.

"Our research shows not only can we stop cervical cancer cells from growing in the test tube, but we can also completely eliminate the formation of cancer tumours in animal models," Dr McMillan said.

Professor Ian Frazer, Director of the CICR and developer of a vaccine for cervical cancer, said the research represented a significant step towards developing gene therapy for cervical cancer.

Cervical cancer is the leading cause of cancer death in women aged 25-50 worldwide and causes around 300 deaths per year in Australia.

Cervical cancer is caused by infection with the human papillomavirus and is the result of the over-production of two viral cancer-causing genes called E6 and E7.

The research team was able to turn off the production of these genes in cancer cells, resulting in the death of the cancer.

"Because these viral genes are foreign we can treat normal cells and they remain unaffected by our treatment," Dr McMillan said.

"Development of treatments for humans would be an advance over the current treatments, radiation and chemotherapy, which kill not only cancer cells but also normal cells that leads to hair loss and nausea.

"We envisage such treatment will be used for all forms of cervical cancer including the premalignant lesions picked up by the pap smear and especially for advanced cervical cancers where the cancer has moved to other sites such as the lung or liver."

Dr McMillan said the research also showed gene silencing enhanced the effect of chemotherapy by up to four times.

He said the findings suggest a cancer-specific treatment for advanced cervical cancers will be possible either alone or in combination with current treatments.

He said the next stage of research will focus on the development of materials for human trials to allow proper delivery of the drug to patients and to investigate whether other cancer types can be treated this way. A treatment using this technique is at least three years away.
-end-
Dr McMillan's findings were recently published in the prestigious Molecular Pharmacology journal.

Media inquiries: Dr Nigel McMillan 61-732-405-392 or 1-413-730-894

Research Australia

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.