Caltech researchers get first 3-D glimpse of bacterial cell-wall architecture

November 17, 2008

PASADENA, Calif.--The bacterial cell wall that is the target of potent antibiotics such as penicillin is actually made up of a thin single layer of carbohydrate chains, linked together by peptides, which wrap around the bacterium like a belt around a person, according to research conducted by scientists at the California Institute of Technology (Caltech). This first-ever glimpse of the cell-wall structure in three dimensions was made possible by new high-tech microscopy techniques that enabled the scientists to visualize these biological structures at nanometer scales.

"This is both a technological and biological advance," says Grant Jensen, associate professor of biology at Caltech, a Howard Hughes Medical Institute investigator, and the principal investigator on the study.

Their research appears in the online early edition of the Proceedings of the National Academy of Sciences (PNAS).

"Bacterial cells rely on a cage-like net that surrounds them to maintain their integrity," Jensen explains. "If it weren't for this molecular bag, the bacteria couldn't survive; they would likely rupture."

This bag, called a sacculus, is made out of peptidoglycan, a mesh-like structure of carbohydrates (glycans) and amino-acid peptides. It is the sacculus, Jensen notes, that is targeted by the antibiotic penicillin; penicillin blocks a bacterium's ability to grow and remodel the bag to fit it as the bacterium itself grows. "If the bug can't make this bag," Jensen says, "it can't multiply, and you get better."

Researchers have long been interested in understanding the precise architecture of the sacculus. In particular, Jensen and his colleagues have wondered whether the so-called glycan strands--which are cross-linked by peptides to create peptidoglycan--"wrap around the cell like a belt wraps around a person," or whether they stand up from the surface of the bacterial cell, "like grass."

The answer to this debate has eluded the scientists, however, because trying to image such tiny biological objects has been beyond their technological reach. Until now, that is.

"Six years ago, a gift from the Moore Foundation allowed us to buy what is arguably the world's best electron cryomicroscope," says Jensen. "This allowed us to take a different kind of picture of small biological objects than has ever been possible before. These pictures are 3-D images to molecular resolution--you can actually start to see individual biological molecules. Using it, we were able to see this network of glycan strands. It was just remarkable."

By pairing the electron cryotomography and a purification technique that involved removing the sacculi and flattening them in a very thin layer of water, postdoctoral scholar Lu Gan, the paper's first author, was able to image the peptidoglycan structure in three dimensions, which allows for a virtual 3-D tour of the bacterial sacculus.

"What we saw were long skinny tubes wrapping around the bag like the ribs of a person or a belt around the waist," says Jensen. "We also saw that the sacculus is just a single layer thick."

"This is a clear answer to this old question," adds Gan. "We now know what the architecture of this most basic shape-determining molecule is. We now know the right answer versus having a family of answers, some of which are wrong."

Understanding how the cell wall is built is important, says Jensen, because scientists have long been in the dark about some of the most basic physical and mechanical aspects of bacterial life, including why they are shaped the way they are. "It's hard to understand how a building is constructed unless you can see the studs," he explains. "Now that we can see the studs--now that we can see the basic architecture of the sacculus--we're closer to understanding how a bacterium could direct its own growth, and how drugs that block that process might work."
Also involved in the research reported in PNAS was Songye Chen, a postdoctoral scholar in biology at Caltech.

The paper, "Molecular organization of gram-negative peptidoglycan," was published in the PNAS Early Edition. This work was supported by grants from the National Institutes of Health, a Searle Scholar Award, Caltech's Beckman Institute, and gifts from the Gordon and Betty Moore Foundation and the Agouron Institute. Lu Gan is supported by a fellowship from the Damon Runyon Cancer Research Foundation.

Contact: Lori Oliwenstein
(626) 395-3631

Visit the Caltech Media Relations website at

California Institute of Technology

Related Bacterium Articles from Brightsurf:

Root bacterium to fight Alzheimer's
A bacterium found among the soil close to roots of ginseng plants could provide a new approach for the treatment of Alzheimer's.

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.

Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.

Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.

Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.

How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.

The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.

Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).

The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.

Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.

Read More: Bacterium News and Bacterium Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to