Breaking BubR1 mimics genetic shuffle seen in cancer cells

November 17, 2008

PHILADELPHIA (Nov. 17, 2008) - A study of how one protein enzyme, BubR1, helps make sure chromosomes are equally distributed during mitosis might explain how the process of cell division goes so awry in cancer, according to researchers from Fox Chase Cancer Center. Their findings might offer a better understanding of the processes behind cancer-cell survival and drug-resistance.

In an article published online today in the Journal of Cell Biology, the Fox Chase re-searchers demonstrate that the BubR1 protein contains four separate functional areas that take part in cell division. Mutations in these areas, the researchers say, lead to a genetic rearrangement similar to a process that allows cancer cells to evade destruction by medi-cal treatment. Inhibiting BubR1 could be a strategy that enhances the killing power of current therapeutics, co-author Tim J. Yen, Ph.D., believes.

"Improper chromosomal segregation is a hallmark of cancer - it scrambles chromosomes and shuffles the genetic deck in a way that helps some cancer cells to evade destruction," says Yen, a senior member of the Fox Chase scientific staff. "This shuffling can, in ef-fect, push a cancer cell to evolve in a way that allows it to survive drug or radiation ther-apy."

According to Yen, cancer cells survive by playing a risky evolutionary gamble. Improper chromosomal segregation allows cancer cells to shuffle their genetic deck to select for traits that allow them to survive and continue to grow. The downside of this strategy is that some daughter cells are dealt bad hands and die. As long as the genetic alterations are made on a relatively small scale, Yen says, cells within the tumor will continually evolve so that they can readily adapt to drugs.

"But here is an opportunity to force cancer's hand, as it were, by causing more damaging changes on a much larger scale than cancer cells can handle," Yen says. "Given that BubR1 is responsible for properly dealing from the genetic deck, its inhibition would re-sult in catastrophic genetic changes that are incompatible with cancer-cell life."

The BubR1 enzyme has multiple roles as part of the cellular machinery that physically moves each of the 23 pairs of human chromosome into each new daughter cell. The pro-tein also plays a part in regulating the so-called mitotic checkpoints, which serve as qual-ity control for cell division. If the machinery does not function properly or the check-points are ignored, some daughter cells get more than their accustomed share of DNA, which can offer them a competitive advantage, Yen says.

Yen and Haomin Huang, Ph.D., a postdoctoral fellow in Yen's laboratory and lead author of the paper, determined that the structure of the BubR1 protein undergoes four chemical modifications that may be important for turning the activity of this enzyme off or on. By mutating BubR1 at positions within the protein that become chemically modified, the re-searchers were able to determine some of the protein's roles in the process of chromo-some segregation during mitosis.

One position in particular, labeled S670, was found to be essential in preventing division errors. It serves as a means of connecting chromosomes to the microtubule proteins that pull them into the daughter cells. When the researchers prevented S670 from being prop-erly modified, cell-culture studies showed that the chromosomes failed to be distributed equally between the daughter cells during division.

"Our studies show that of all the proteins and protein complexes associated with cell divi-sion, the phosphorylation status of BubR1 is a determining factor in cell-cycle control," Yen says. "Exploiting BubR1's crucial functions may help to increase the efficiency of cancer drugs that disrupt DNA replication, like gemcitabine, or drugs that prevent cell division, like paclitaxel."
-end-
Joining Yen and his Fox Chase colleagues in this study were researchers from GlaxoS-mithKline and Avram Hershko, Ph.D., of the Technion-Israel Institute of Technology in Haifa, Israel. Hershko, a longtime visiting scientist at Fox Chase, joined the Yen labora-tory while on sabbatical. Hershko and an Israeli colleague received the 2004 Nobel Prize in chemistry along with former Fox Chase researcher Irwin Rose, Ph.D., for their discov-ery of ubiquitin-mediated protein degradation at Fox Chase.

Grants from the Leukemia and Lymphoma Society, National Institutes of Health and the Commonwealth of Pennsylvania funded this study.

Fox Chase Cancer Center is one of the leading academic cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as the nation's first cancer hospital, Fox Chase became one of the first institutions to be designated a National Can-cer Institute Comprehensive Cancer Center in 1974. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, treatment, and community outreach. For more information, visit Fox Chase's web site at www.fccc.edu or call 1-888-FOX-CHASE or 1-888-369-2427.

Fox Chase Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.