Regenerative stem cell therapy offers new hope for treating cardiovascular disease

November 17, 2010

Northwestern Medicine physician researchers are revolutionizing treatment of cardiovascular disease by utilizing patients' own stem cells to regenerate heart and vascular tissue. Northwestern Medicine is the lead site for a study examining stem cell transplantation as treatment for critical limb ischemia. Chief investigator Douglas Losordo, MD, director of the Program in Cardiovascular Regenerative Medicine at Northwestern Memorial Hospital and the Eileen M. Foell Professor of Heart Research of Northwestern University's Feinberg School of Medicine, will present the findings of this study at the American Heart Association's Scientific Sessions in Chicago, on Wednesday, November 17.

"Traditionally, cardiovascular medicine has focused on repairing damaged tissues with medication or surgery," said Losordo, also director of the Feinberg Cardiovascular Research Institute. "For some patients, their cardiovascular disease is advanced to the point that standard treatment options are not effective. Regenerative cardiovascular medicine strives to redevelop cardiac and vascular tissue and stimulate new blood supply to areas like the heart and legs by using stem cells already present in the patient's body."

Losordo's limb preservation study examined the effectiveness of stem cell therapy in limb preservation for patients with critical limb ischemia (CLI). CLI develops in patients with severe obstruction of the arteries which limits blood flow to the extremities. CLI results in more than 100,000 amputations annually in the United States. The trial tested the ability of CD34+ cells to stimulate new blood vessel formation in ischemic limbs, which can improve perfusion and salvage function.

The phase II, double-blind placebo controlled trial had a total of 28 patients randomized at 18 U.S. sites. The patients enrolled in this study were Rutherford class 4 and 5, meaning they were in the later stages of peripheral artery disease and at heightened risk for amputation. Patients in the randomized group had CD34 injected at eight locations in the ischemic limb and were followed for 12 months.

"Stem cell treatment was associated with a significant reduction in amputation rate," said Losordo. "Treatment was associated with a 50 percent reduction in the total amputation rate compared to control. Although further study is needed, these results provide evidence that CD34 cell therapy is an effective treatment for critical limb ischemia."

Losordo and his Northwestern Medicine team are leading the field of stem cell therapy for cardiovascular conditions and bringing it to the forefront of medicine. "The results of this study are encouraging and provide evidence for that stem cell therapy can significantly repair cardiac and vascular tissues," said Losordo. "As study of stem cells continues, I believe we're on the verge of a rebirth in the practice of medicine. Using a patient's own cells to regenerate their body has enormous potential to treat conditions that have previously been considered irreversible."
-end-
To learn more about the Program in Cardiovascular Regenerative Medicine, call 312-695-0072.



About Northwestern Memorial Hospital

Northwestern Memorial is one of the country's premier academic medical center hospitals and is the primary teaching hospital of the Northwestern University Feinberg School of Medicine. Along with its Prentice Women's Hospital and Stone Institute of Psychiatry, the hospital comprises 854 beds, 1,603 affiliated physicians and 7,144 employees. Northwestern Memorial is recognized for providing exemplary patient care and state-of-the art advancements in the areas of cardiovascular care; women's health; oncology; neurology and neurosurgery; solid organ and soft tissue transplants and orthopaedics.

Northwestern Memorial possesses nursing Magnet Status, the nation's highest recognition for patient care and nursing excellence, and it is listed in 12 clinical specialties in U.S. News & World Report's 2010 "America's Best Hospitals" guide. For 10 years running, it has been rated among the "100 Best Companies for Working Mothers" guide by Working Mother magazine. The hospital is a recipient of the prestigious National Quality Health Care Award and has been chosen by Chicagoans as the Consumer Choice according to the National Research Corporation's annual survey for 11 years.

Northwestern Memorial HealthCare

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.