The brain's zoom button

November 17, 2011

Everybody knows how to zoom in and out on an online map, to get the level of resolution you need to get you where you want to go. Now researchers have discovered a key mechanism that can act like a zoom button in the brain, by controlling the resolution of the brain's internal maps.

In this week's edition of Cell, Lisa Giocomo and colleagues at the Kavli Institute for Systems Neuroscience at NTNU describe how they "knocked out", or disabled, ion channels in the grid cells of the mouse brain. Grid cells are equivalent to a longitude and latitude coordinate system in the brain, with the grid cell firing at the cross-point where the longitude and latitude lines meet. This network enables the brain to make internal maps. Ion channels mediate signals between the inside and the outside of the cells. When the researchers knocked out the ion channels, they found that the resolution of the maps created by the mouse brain became coarser, in that the area covered by each grid cell was larger.

"If grid cells are similar to a longitude and latitude coordinate system, what determines the distance between the coordinate points of this internal map?" Giocomo asks. "When we knocked out the HCN1 ion channel, the scale of the innate coordinate system increased. It's like losing longitude and latitude lines on a map. Suddenly you can't represent a spatial environment at a very fine scale."

In a normal brain, the ion channels function as they should, and the brain is able to generate the precise resolution for the map that it needs. But if the ion channels don't work - as was the case in the experimental set up - then the map isn't at the right resolution.

Future research will aim at determining what effect this might have on spatial memory and navigation. Giocomo says her findings could prove useful for future research on Alzheimer's and related diseases, "particularly because the area that is damaged in Alzheimer's is the area that we are investigating. Also, one of the first things to go wrong with Alzheimer's is that you suddenly start to lose your sense of direction. Of course, we don't know if there is any connection yet, but it might be worth looking into."

The article in Cell is being published simultaneously with a companion article in Neuron, authored by researchers at the Kavli Institute for Brain Science, at Columbia University in New York. The two Kavli Institutes decided to work cooperatively on the topic, says Edvard Moser, director of the Kavli Institute at NTNU.

"We believe that this is a great example of collaborative research instead of neck-and-neck competition. We got our knock-out mice from (Eric) Kandel's lab (at Columbia), and they sent a post-doc over here to work with us. We discussed and debated our findings of course, gave each other feedback and input," Moser says.

The collaborative approach enabled the two institutes to publish linked research data from two interconnected areas of the brain, the entorhinal cortex and the hippocampus. Both sets of data show the effect of removing ion channels in grid cells and place cells. Place cells are thought to base their spatial response based on the calculations of the grid cells, so finding this close correspondence in research results is "very rewarding," Moser says. "It's great that we can find two pieces of evidence that show how scale is represented in our brain, and that we can publish these results at the same time.
-end-
The DOI for the paper is: 10.1016/j.cell.2011.08.051

Lisa Giocomo and Edvard Moser will present their findings at "Neuroscience 2011," the annual meeting of the Society for Neuroscience, which is being held from 12-16 November in Washington,

Norwegian University of Science and Technology

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.