Thomas Gaborski named 2014 Young Innovator by international Biomedical Engineering Society

November 17, 2014

Thomas Gaborski's research may be in ultra-thin nano-membranes, but it's going to be titanic in advancing tissue engineering.

Gaborski, assistant professor of biomedical engineering at Rochester Institute of Technology, and his research team are developing ways to use ultra-thin nano-membranes and adipose stem cells to create the vascular network necessary in engineering tissue, skin and organs.

For these organs to be viable, there is a need for not only the organ structure but also the inner network of micro-vessels and capillaries. Gaborski is helping develop that complex structure, using transparent and permeable membrane "scaffolds" to support cell and tissue growth, essential to tissue engineering.

Using adipose-derived stem cells that come from fat tissue, acquired from adults rather than embryos, Gaborski has been able to create functional microenvironments that help support and differentiate stem cells into the specialized cells that make up the human body. Creating engineered tissues from stem cells can help to address the critical shortage of donor organs. It also may alleviate some aspects of organ rejection by an individual's immune system because of the likelihood that an individual's own stem cells could generate needed tissue.

For his work with thin membranes and cell culture on membranes, Gaborski received the 2014 Young Innovator Award in Cellular and Molecular Bioengineering given by the Biomedical Engineering Society this fall. The award is given to profile the best research being carried out by talented assistant professors working in the growing bioengineering field. He presented results of his work in porous membranes and the ability to control cell functions at the society's annual meeting, Oct. 22-25 in San Antonio, Texas.

The goal of tissue engineering is to repair or replace tissues and organs damaged as a result of injury or disease. This requires the precise use of many types of cells, support scaffolds and biochemical factors to create replacement tissue. It is important to design these structures with the proper mechanical and physiological requirements, said Gaborski, a faculty member in RIT's Kate Gleason College of Engineering.

Today, researchers can develop two-dimensional tissues such as artificial skin that is thin enough to receive needed oxygen and nutrients. However, most organs are three-dimensional, he explained.

"While it is possible in the lab to make very thin slices of tissue-mimics, once you create a three-dimensional tissue you need to create the blood vessel network, essentially the 'highway system.' The work that we are doing here is differentiating the adipose stem cells into the cells that make up blood vessels."

Gaborski found that porous membranes could be used to help promote endothelial differentiation of adipose-derived stem cells and to investigate perivascular interactions. Growing the adipose stem cells on one side of a thin, porous nano-membrane and culturing them, the team found that the cells differentiated into endothelial cells even when grown on this lab-produced membrane, and that they acted more like perivascular cells--those that help blood vessels form and stabilize.

"We hope to create the tools and methodologies that will enable future tissue engineers to create blood vessels from anyone's own fat tissue," said Gaborski, who is also part of the Nanomembrane Research Group, a collaborative team from RIT, the University of Rochester and local nanotechnology company SiMPore. The Nanomembrane Research Group is made up of faculty, students, scientists and engineers working to develop ultrathin silicon membrane technologies. The group focuses on use of novel porous nanomaterials because of their permeability and ability to be scaled-up for varied biological and non-biological devices and structures.

"We believe this sort of toolbox could be used by others to create vascular cells for 3D-printed tissues," Gaborski added. "There has been a lot of discussion about 3D-printed organs and tissues. We are not looking to generate organs here at RIT, but what we are looking to do is generate protocols and the tools necessary to differentiate your cells, or my cells, into blood vessels that would be used in 3D-printed organs of the future."

Rochester Institute of Technology

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to