Mathematical model helps show how zebrafish get their stripes

November 17, 2015

PROVIDENCE, R.I. [Brown University] -- A mathematical model developed by Brown University researchers is shedding new light on how zebrafish get their iconic stripes. The model helps to demonstrate how two dynamic processes--the movement of pigment cells across the skin, and the birth and death of cells as the fish grows--combine to keep zebrafish stripes in line.

The model is described in the Journal of the Royal Society Interface.

Zebrafish have become quite a popular model organism for biology researchers over the past few decades. The small freshwater fish begin life as transparent embryos and develop in just a few months to full size, giving scientists the chance to watch their development in detail. The emergence of their namesake stripes of dark blue and bright yellow has been the subject of much research. The stripes have been shown to be the result of interplay between three types of pigment cells: black melanophores, yellow xanthophores, and silvery iridophores.

"The stripe pattern forms dynamically as the fish develops," said Alexandria Volkening, a graduate student and Brown's Division of Applied Mathematics and the lead author on the new paper. "It's not like these pigment cells are filling out some kind of prepattern that's already there. It's the interactions of the cells over time that causes the patterns to form. We wanted to build a model that simulates this based as much as possible on what's known about the biology."

The model Volkening developed treats cells as individual agents, behaving according to a set of rules derived from experiments. It directly incorporates two types of cells: the black melanophores and the yellow xanthophores. The effects of the third cell type, the iridophores, are implicit in the behavior of the other two cells, though the iridophores themselves are not physically included in the model.

The model starts with melanophores and xanthophores arranged in a way that mimics the arrangement of cells in fish just a few weeks old. The model domain then grows in a way that approximates the growth of the fish. As the domain grows, new cells are added that mimic the stem cells from which pigments are derived in actual fish. The stem cells take cues on which type of cell to become from existing pigment cells. Those cues come both from cells in the immediate vicinity, and from cells further away. Experiments in actual fish have suggested that both short- and long-distance communication is important. In the model, if a new stem cell is surrounded by black cells and the adjacent developing stripe regions are yellow, it has a much greater chance of becoming a dark cell itself. The same goes for yellow cells. Cell death is controlled by similar mechanism. A black cell surrounded on all sides by light ones or without sufficient yellow cells in adjacent stripe regions has a much higher probability of dying.

Experiments have shown that pigment cells also have the ability to move short distances across the fish's skin, and the model captures that dynamic as well. The pigments are thought to move according to cues communicated from surrounding cells. In the model, all of the cells repel each other, but different cell types have a stronger repulsion than like cells. The movement cues are gathered from the cells immediately surrounding a pigment cell.

Using these rules over the normal growth period of an actual fish, model was able to successfully recreate the development of stripes as seen in experiments. It was also able to recreate the results of a variety of experiments biologists have done to perturb stripe formation. For example, scientists have ablated pigment cells early in a fish's development to see how it would affect stripe development. Those experiments showed that when cells are knocked out, the fish form oblong spots rather then stripes as they continue to develop. The model was able to recreate those effects.

Once they had a model that could reconstruct actual experiments, the researchers could test how different cellular dynamics influence stripe growth.

"One thing that's not clear is the role of birth and death versus movement. Do you need both or just one?" said Bjorn Sandstede, chair of Brown's Division of Applied Mathematics and a co-author of the paper. "What we can do in the model is turn off one of the two and see what we get."

With movement turned off, the model showed that cells formed oblong blobs with no particular orientation. With birth and death turned off, like cells formed tightly packed spots rather than stripes. Taken together, the results help to confirm the interdependent dynamics of the two processes in the development of the stripe pattern.

Sandstede says that simulations like these are important because they offer a window into how complex patterns and structures form dynamically in nature. "If you look at any kind of organism, they start with oocytes, which are roundish structures with little spatial differentiation at all, and you end up with organisms like us that have a complex spatial structure," he said. "I think it's important to try to understand how spatial differentiation occurs. Zebrafish and their stripes are a good model to do that because you can identify the different cells and what they're doing in the process."

Volkening says she plans to continue to refine the model to better capture the effects of iridophores that were not directly included in the current model. She hopes the model can serve as a guide for future experiments in actual fish.

"One of the benefits of the models is that we can do this in six minutes," she said. "It takes weeks to grow the fish," Volkening said.
-end-
Note to Editors:

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Brown University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.