Nav: Home

DNA evidence from 5,310-year-old corn cob fills gaps in history

November 17, 2016

Researchers who have sequenced the genome of a 5,310-year-old corn cob have discovered that the maize grown in central Mexico all those years ago was genetically more similar to modern maize than to its wild ancestor. For example, the ancient maize already carried genetic variants responsible for making kernels soft, a common feature of modern corn. The findings are reported in Current Biology on November 17.

"Around 9,000 years ago in modern-day Mexico, people started collecting and consuming teosinte, a wild grass," says Nathan Wales of the Natural History Museum of Denmark. "Over the course of several thousand years, human-driven selection caused major physical changes, turning the unproductive plant into modern maize, commonly known as corn. Maize as we know it looks so different from its wild ancestor that a couple of decades ago scientists had not reached a consensus regarding the true ancestor of maize."

To better understand the domestication history of the world's most produced crop, Wales and his colleagues, including Jazmín Ramos-Madrigal, sequenced the genome of a 5,310-year-old maize cob from central Mexico. The cob, known as Tehuacan162, was excavated from a cave in the Tehuacan Valley in the 1960s, during a major archaeological expedition lead by Richard MacNeish.

Fortunately, the Robert S. Peabody Museum in Andover, MA, took excellent care of the ancient maize specimen--one of the five oldest known in the world--for decades. Wales explains that this particular cob and the DNA within it had been unusually well preserved.

"Archaeological specimens frequently have high levels of bacterial DNA due to decomposition and soil contaminants," he says. "However, during genetic testing of ancient cobs, we were astonished to find that 70 percent of the DNA from the Tehuacan162 cob was from the plant!" Most other ancient samples contain less than 10 percent plant DNA.

Tehuacan162 didn't have hard seed coats like its wild ancestor would have. But, the ancient cob is less than a tenth of the size of modern cobs, at less than two centimeters long. In addition, the ancient cob produced only eight rows of kernels, about half that of modern maize. That led the researchers to suspect that its genes would offer clues on the early stages of maize domestication.

To make the most of the small sample, Wales and Ramos-Madrigal used cutting-edge paleogenomic techniques. They extracted DNA with a method designed to recover ultra-short DNA, taking special care to avoid losing any genetic material. As a result, the researchers were able to prepare sufficient DNA for sequencing while still preserving enough of the sample to determine the cob's precise age via radiocarbon dating.

The new findings offer an informative snapshot in the 10,000-year evolutionary history of maize and its domestication, the researchers say. In addition to elucidating how maize provided a dietary foundation for ancient civilizations like the Maya, such studies can also aid in understanding and improving commercially important lines of modern maize, the researchers say.

"This is only the beginning of the story," Ramos-Madrigal says. "Humans dispersed maize across the Americas very quickly and very successfully. We want to know how humans dispersed it, which routes they took, and how maize adapted to such diverse environments."
-end-
This research was supported by the Lundbeck Foundation, the Danish Council for Independent Research, and the Danish National Research Foundation .

Current Biology, Ramos-Madrigal et al.; "Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication" http://www.cell.com/current-biology/fulltext/S0960-9822(16)31120-4

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...