Nav: Home

DNA evidence from 5,310-year-old corn cob fills gaps in history

November 17, 2016

Researchers who have sequenced the genome of a 5,310-year-old corn cob have discovered that the maize grown in central Mexico all those years ago was genetically more similar to modern maize than to its wild ancestor. For example, the ancient maize already carried genetic variants responsible for making kernels soft, a common feature of modern corn. The findings are reported in Current Biology on November 17.

"Around 9,000 years ago in modern-day Mexico, people started collecting and consuming teosinte, a wild grass," says Nathan Wales of the Natural History Museum of Denmark. "Over the course of several thousand years, human-driven selection caused major physical changes, turning the unproductive plant into modern maize, commonly known as corn. Maize as we know it looks so different from its wild ancestor that a couple of decades ago scientists had not reached a consensus regarding the true ancestor of maize."

To better understand the domestication history of the world's most produced crop, Wales and his colleagues, including Jazmín Ramos-Madrigal, sequenced the genome of a 5,310-year-old maize cob from central Mexico. The cob, known as Tehuacan162, was excavated from a cave in the Tehuacan Valley in the 1960s, during a major archaeological expedition lead by Richard MacNeish.

Fortunately, the Robert S. Peabody Museum in Andover, MA, took excellent care of the ancient maize specimen--one of the five oldest known in the world--for decades. Wales explains that this particular cob and the DNA within it had been unusually well preserved.

"Archaeological specimens frequently have high levels of bacterial DNA due to decomposition and soil contaminants," he says. "However, during genetic testing of ancient cobs, we were astonished to find that 70 percent of the DNA from the Tehuacan162 cob was from the plant!" Most other ancient samples contain less than 10 percent plant DNA.

Tehuacan162 didn't have hard seed coats like its wild ancestor would have. But, the ancient cob is less than a tenth of the size of modern cobs, at less than two centimeters long. In addition, the ancient cob produced only eight rows of kernels, about half that of modern maize. That led the researchers to suspect that its genes would offer clues on the early stages of maize domestication.

To make the most of the small sample, Wales and Ramos-Madrigal used cutting-edge paleogenomic techniques. They extracted DNA with a method designed to recover ultra-short DNA, taking special care to avoid losing any genetic material. As a result, the researchers were able to prepare sufficient DNA for sequencing while still preserving enough of the sample to determine the cob's precise age via radiocarbon dating.

The new findings offer an informative snapshot in the 10,000-year evolutionary history of maize and its domestication, the researchers say. In addition to elucidating how maize provided a dietary foundation for ancient civilizations like the Maya, such studies can also aid in understanding and improving commercially important lines of modern maize, the researchers say.

"This is only the beginning of the story," Ramos-Madrigal says. "Humans dispersed maize across the Americas very quickly and very successfully. We want to know how humans dispersed it, which routes they took, and how maize adapted to such diverse environments."
-end-
This research was supported by the Lundbeck Foundation, the Danish Council for Independent Research, and the Danish National Research Foundation .

Current Biology, Ramos-Madrigal et al.; "Genome Sequence of a 5,310-Year-Old Maize Cob Provides Insights into the Early Stages of Maize Domestication" http://www.cell.com/current-biology/fulltext/S0960-9822(16)31120-4

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Dna Articles:

In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
Switching DNA and RNA on and off
DNA and RNA are naturally polarised molecules. Scientists believe that these molecules have an in-built polarity that can be reoriented or reversed fully or in part under an electric field.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.